

Figura V.1: Suzioni indotte dal costipamento sui provini testati: (a) in cella triassiale; (b) in cella di colonna risonante.

Figura V.2: Prova mp07: a) percorso tensionale; b) posizione dei dati sperimentali nel piano $(p-u_a):\Delta v; c)$ b) posizione dei dati sperimentali nel piano $(p-u_a):\Delta v_w$.

Figura V.3: Variazioni di volume specifico osservate in fase di equalizzazione: a) fasi di drying, correlazione con le suzioni iniziale e finale; b) fasi di drying, correlazione con la variazione di contenuto d'acqua; c) fasi di wetting, correlazione con la variazione di contenuto d'acqua.

Figura V.4: Effetto della suzione sugli indici di compressibilità nel piano (p-u_a):v: a) in condizioni di consolidazione normale; b) in fase di scarico e ricarico.

Figura V.5: Effetto della suzione sugli indici di compressibilità nel piano $(p-u_a):v_w:$ a) in condizioni di consolidazione normale; b) in fase di scarico e ricarico.

Figura V.6: Posizione delle rette vergini: a) determinazione del parametro N*; b) effetto della suzione su N*.

Figura V.7: Punti di snervamento rilevati dalle fasi di compressione isotropa a suzione costante.

Figura V.8: Effetto della suzione sulla resistenza a taglio: a) coesione apparente b) angolo di attrito ϕ^{b} .

Figura V.9: Effetto della suzione nell'acqua di volume e nell'acqua di menisco.

Figura V.10: Interpretazione dei risultati ottenuti sulla sabbia limosa del Metramo su materiale costipato: a) all'ottimo; b) sul lato wet e consolidato a $(p-u_a) = 400$ kPa.

Figura V.11: Fasi di compressione a suzione 100 kPa: interpolazione della relazione $G_0:(p-u_a)$ in condizioni di normale consolidazione e lungo un percorso di scarico e ricarico.

Figura V.12: Fasi di compressione a suzione 200 kPa: interpolazione della relazione $G_0:(p-u_a)$ in condizioni di normale consolidazione.

Figura V.13: Fasi di compressione a suzione 400 kPa: interpolazione della relazione $G_0:(p-u_a)$ in condizioni di normale consolidazione.

Figura V.14: Effetto della suzione sul modulo di rigidezza iniziale del materiale normalmente consolidato: funzione $F(u_a-u_w)$.

Figura V.15: Interpolazione delle curve di compressione isotropa a suzione 100 kPa.

Figura V.16: Valutazione dell'indice di compressibilità k_s lungo cicli di riduzione ed aumento di suzione.

Figura V.17: . Taratura del modello di Wheeler e Sivakumar (1996) sui risultati sperimentali: scelta della relazione $N^*:(u_a-u_w)$.

Figura V.18: Luoghi di snervamento LC previsti dal modello di Wheeler e Sivakumar (1996).

Figura V.19: Prova mp04RC: a) previsione dell'evoluzione del luogo di snervamento per effetto del percorso tensionale applicato b) confronto tra valori di G_o previsti e misurati.

Figura V.20: Prova mp05RC: a) previsione dell'evoluzione del luogo di snervamento per effetto del percorso tensionale applicato b) confronto tra valori di G_o previsti e misurati.

Figura V.21: Prova mp07RC: a) previsione dell'evoluzione del luogo di snervamento per effetto del percorso tensionale applicato b) confronto tra valori di G_o previsti e misurati.

Figura V.22: Prova mp08RC: a) previsione dell'evoluzione del luogo di snervamento per effetto del percorso tensionale applicato b) confronto tra valori di G_o previsti e misurati.

Figura V.23: Prova mp09RC: a) previsione dell'evoluzione del luogo di snervamento per effetto del percorso tensionale applicato b) confronto tra valori di G_o previsti e misurati.

Figura V.24: Confronto tra previsioni e risultati sperimentali per la prova mp05RC.