

Figura IV.1: Densità secca dei provini di limo argilloso del Po sottoposti a prove triassiali a suzione controllata.

Figura IV.2: Densità secca dei provini di limo argilloso del Po sottoposti a prove RCTS a suzione controllata.

Figure IV.3a-b: Variazioni (a) di volume specifico d'acqua; (b) di volume specifico nelle fasi di equalizzazione a suzione 50 kPa in cella triassiale.

Figure IV.3c-d: Evoluzione (c) del volume specifico d'acqua; (d) del volume specifico nelle fasi di equalizzazione a suzione 50 kPa in cella triassiale.

Figura IV.3e: Evoluzione del contenuto d'acqua nelle fasi di equalizzazione a suzione 50 kPa in cella triassiale.

Figura IV.3f: Deformazioni assiali e radiali osservate nel corso di un'equalizzazione a suzione 50 kPa in cella triassiale (prova S50P400TG).

Figure IV.4a-b: Variazioni (a) di volume specifico d'acqua; (b) di volume specifico nelle fasi di equalizzazione a suzione 100 kPa in cella triassiale.

Figure IV.4c-d-e: Evoluzione (c) del volume specifico d'acqua; (d) del volume specifico; (e) del contenuto d'acqua nelle fasi di equalizzazione a suzione 100 kPa in cella triassiale.

Figure IV.5a-b: Variazioni (a) di volume specifico d'acqua; (b) di volume specifico nelle fasi di equalizzazione a suzione 200 kPa in cella triassiale.

Figure IV.5c-d-e: Evoluzione (c) del volume specifico d'acqua; (d) del volume specifico; (e) del contenuto d'acqua nelle fasi di equalizzazione a suzione 200 kPa in cella triassiale.

Figure IV.6a-b: Variazioni (a) di volume specifico d'acqua; (b) di volume specifico nelle fasi di equalizzazione a suzione 400 kPa in cella triassiale.

Figure IV.6c-d-e: Evoluzione (c) del volume specifico d'acqua; (d) del volume specifico; (e) del contenuto d'acqua nelle fasi di equalizzazione a suzione 400 kPa in cella triassiale.

Figura IV.7: Contenuti d'acqua di fine equalizzazione in cella triassiale.

Figura IV.8: Risultati delle prove di compressione isotropa nel piano ln(p-u_a):v per tutti i livelli di suzione indagati.

Figura IV.9: Indici di compressibilità rilevati dalle prove di compressione isotropa.

Figura IV.10a: Risultati delle prove di compressione isotropa in cella triassiale nel piano $ln(p-u_a):v_w$ per tutti i livelli di suzione indagati.

Figura IV.10b: Risultati delle prove di compressione isotropa nel piano $ln(p-u_a):v_w$ per i livelli di suzione non nulla indagati.

Figura IV.11: Risultati delle prove di compressione isotropa nel piano $ln(p-u_a)$:S_r per i livelli di suzione non nulla indagati.

tensione media netta, p-u_a (kPa)

Figura IV.12: Risultati (a) nel piano $\ln(p-u_a):\Delta v$; (b) nel piano $\ln(p-u_a):\Delta v_w$ delle prove di compressione isotropa condotte alla suzione di 50 kPa in cella triassiale.

tensione media netta, p-u_a (kPa)

Figura IV.13: Risultati (a) nel piano $\ln(p-u_a):\Delta v$; (b) nel piano $\ln(p-u_a):\Delta v_w$ delle prove di compressione isotropa condotte alla suzione di 100 kPa in cella triassiale.

Figura IV.14: Risultati (a) nel piano $\ln(p-u_a):\Delta v$; (b) nel piano $\ln(p-u_a):\Delta v_w$ delle prove di compressione isotropa condotte alla suzione di 200 kPa in cella triassiale.

Figura IV.15: Risultati (a) nel piano $\ln(p-u_a):\Delta v$; (b) nel piano $\ln(p-u_a):\Delta v_w$ delle prove di compressione isotropa condotte alla suzione di 400 kPa in cella triassiale.

Figura IV.16: Confronto tra le deformazioni assiali e radiali nelle fasi di compressione condotte alla suzione 50 kPa.

Figura IV.17a: Risultati delle fasi di taglio condotte a suzione 50 kPa sul materiale consolidato a $(p-u_a)=100-200-400$ kPa nel piano ε_a :q.

Figure IV.17b-c: Risultati delle fasi di taglio condotte a suzione 50 kPa sul materiale consolidato a $(p-u_a)=100-200-400$ kPa: (b) nel piano $\varepsilon_a:\Delta v_w$.

Figura IV.18: Risultati delle fasi di taglio condotte a suzione 100 kPa sul materiale consolidato a (p-u_a)=100-200-400 kPa: (a) nel piano ε_a :q; (b) nel piano $\varepsilon_a : \Delta v$, (c) nel piano $\varepsilon_a \Delta v_w$.

Figura IV.19: Risultati delle fasi di taglio condotte a suzione 200 kPa sul materiale consolidato a (p-u_a)=100-200-400 kPa: (a) nel piano ε_a :q; (b) nel piano $\varepsilon_a : \Delta v$, (c) nel piano $\varepsilon_a \Delta v_w$.

Figura IV.20: Risultati delle fasi di taglio condotte a suzione 400 kPa sul materiale consolidato a (p-u_a)=100-200-400 kPa: (a) nel piano ε_a :q; (b) nel piano $\varepsilon_a : \Delta v$, (c) nel piano $\varepsilon_a \Delta v_w$.

Figura IV.21: Risultati nel piano ε_a :q delle fasi di taglio realizzate sul materiale consolidato: (a) a (p-u_a)=100 kPa; (b) a (p-u_a)=400 kPa.

Figura IV.22: Risultati nel piano $\varepsilon_a : \Delta v$ delle fasi di taglio realizzate sul materiale consolidato: (a) a (p-u_a)=100 kPa; (b) a (p-u_a)=400 kPa.

Figura IV.23: Risultati nel piano $\varepsilon_a : \Delta v_w$ delle fasi di taglio realizzate sul materiale consolidato: (a) a (p-u_a)=100 kPa; (b) a (p-u_a)=400 kPa.

Figura IV.24: Resistenza di picco del limo argilloso del Po parzialmente saturo.

Figura IV.25a: Risultati delle prove RC realizzate sulla sabbia limosa del Metramo costipata all'ottimo, rappresentati nel piano $(p-u_a)$:G_o.

Figura IV.25b: Risultati delle prove TS realizzate sulla sabbia limosa del Metramo costipata all'ottimo, rappresentati nel piano $(p-u_a)$:G_o.

Figura IV.26a: Risultati delle prove RC realizzate sulla sabbia limosa del Metramo addensata sul lato wet, rappresentati nel piano (p-u_a):G_o.

Figura IV.26b: Risultati delle prove RC realizzate sulla sabbia limosa del Metramo addensata sul lato wet, rappresentati nel piano (p-u_a):G_o.

Figura IV.27a: Risultati delle prove RC realizzate sulla sabbia limosa del Metramo costipata all'ottimo, rappresentati nel piano (u_a-u_w) :G_o.

Figura IV.27b: Risultati delle prove TS realizzate sulla sabbia limosa del Metramo costipata all'ottimo, rappresentati nel piano (u_a-u_w) :G₀.

Figura IV.28a: Risultati delle prove RC realizzate sulla sabbia limosa del Metramo addensata sul lato wet, rappresentati nel piano (u_a-u_w) :G₀.

Figura IV.28b: Risultati delle prove TS realizzate sulla sabbia limosa del Metramo addensata sul lato wet, rappresentati nel piano (u_a-u_w) :G₀.

Figura IV.29: Effetto della velocità di deformazione sulla modulo di rigidezza iniziale della sabbia limosa del Metramo: (a) costipata all'ottimo; (b) addensata sul lato wet.

Figura IV.30: Normalizzazione del modulo di rigidezza iniziale della sabbia limosa del Metramo rispetto alla velocità di deformazione: (a) ottimo; (b) wet.

Figura IV.31: Curve di decadimento del modulo di rigidezza iniziale della sabbia limosa del Metramo: (a) costipata all'ottimo; (b) addensata sul lato wet.

Figure IV.32a-b: Variazioni (a) di volume specifico d'acqua; (b) di volume specifico nelle fasi di equalizzazione a suzione 100 kPa in cella RCTS.

Figure IV.32c-d-e: Evoluzione (c) del volume specifico d'acqua; (d) del volume specifico; (e) del contenuto d'acqua nelle fasi di equalizzazione a suzione 100 kPa in cella triassiale.

Figure IV.33a-b:Variazioni (a) di volume specifico d'acqua; (b) di volume specifico nelle fasi di equalizzazione a suzione 200 kPa in cella RCTS.

Figure IV.33c-d-e: Evoluzione (c) del volume specifico d'acqua; (d) del volume specifico; (e) del contenuto d'acqua nelle fasi di equalizzazione a suzione 100 kPa in cella RCTS.

Figure IV.34a-b: Variazioni (a) di volume specifico d'acqua; (b) di volume specifico nelle fasi di equalizzazione a suzione 400 kPa in cella RCTS.

Figure IV.34c-d-e: Evoluzione (c) del volume specifico d'acqua; (d) del volume specifico; (e) del contenuto d'acqua nelle fasi di equalizzazione a suzione 400 kPa in cella RCTS.

Figura IV.35: Contenuti d'acqua di fine equalizzazione in cella RCTS.

Figura IV.36: Curva caratteristica del limo argilloso del Po.

Figura IV.37a: Percorsi tensionali delle prove in cella RCTS condotte alla suzione di 100 kPa.

Figura IV.37b: Modulo di taglio iniziale misurato nelle prove in cella RCTS condotte alla suzione di 100 kPa.

Figura IV.37c: Modulo di taglio adimensionalizzato misurato nelle prove in cella RCTS condotte alla suzione di 100 kPa e sul materiale saturo.

tensione media netta, p-u_a (kPa)

Figura IV.37d: Variazioni di volume specifico osservate nelle prove in cella RCTS condotte alla suzione di 100 kPa.

Figura IV.37e: Variazioni di volume specifico d'acqua osservate nelle prove in cella RCTS condotte alla suzione di 100 kPa.

Figura IV.38a: Percorsi tensionali delle prove in cella RCTS condotte alla suzione di 200 kPa.

Figura IV.38b: Modulo di taglio iniziale misurato nelle prove in cella RCTS condotte alla suzione di 200 kPa.

Figura IV.38c: Modulo di taglio adimensionalizzato misurato nelle prove in cella RCTS condotte alla suzione di 200 kPa e sul materiale saturo.

Figura IV.38d: Variazioni di volume specifico osservate nelle prove in cella RCTS condotte alla suzione di 200 kPa.

Figura IV.38e: Variazioni di volume specifico d'acqua osservate nelle prove in cella RCTS condotte alla suzione di 200 kPa.

Figura IV.39a: Percorsi tensionali delle prove in cella RCTS condotte alla suzione di 400 kPa.

Figura IV.39b: Modulo di taglio iniziale misurato nelle prove in cella RCTS condotte alla suzione di 400 kPa.

Figura IV.39c: Modulo di taglio adimensionalizzato misurato nelle prove in cella RCTS condotte alla suzione di 400 kPa e sul materiale saturo.

Figura IV.39d: Variazioni di volume specifico osservate nelle prove in cella RCTS condotte alla suzione di 400 kPa.

Figura IV.39e: Variazioni di volume specifico d'acqua osservate nelle prove in cella RCTS condotte alla suzione di 400 kPa.

Figura IV.40a: Percorsi tensionali delle prove in cella RCTS con variazione non monotona di $(p-u_a)$.

Figura IV.40b: Modulo di taglio iniziale misurato nelle prove in cella RCTS con variazione non monotona di $(p-u_a)$.

Figura IV.40c: Modulo di taglio adimensionalizzato misurato nelle prove in cella RCTS con variazione non monotona di (p-u_a).

Figura IV.40d: Variazioni di volume specifico osservate nelle prove in cella RCTS con variazione non monotona di (p-u_a).

Figura IV.40e: Variazioni di volume specifico d'acqua osservate nelle prove in cella RCTS con variazione non monotona di $(p-u_a)$.

mp12RC mp11RC

Figura IV.41: Relazioni rigidezza-suzione ottenute dai risultati delle prove mp10RC, mp11RC e mp12RC in fase di primo carico.

Figura IV.42a: Percorsi tensionali delle prove mp04RC, mp05RC, mp10RC, mp11RC.

Figura IV.42b: Effetto di una fase di drying da 200 kPa a 400 kPa di suzione (prove mp04RC e mp05RC) sul modulo di taglio iniziale.

Figura IV.42c: Effetto di una fase di drying da 200 kPa a 400 kPa di suzione (prove mp04RC e mp05RC) sul modulo di taglio adimensionalizzato.

Figura IV.42d: Variazioni di volume specifico osservate nelle prove mp04RC e mp05RC, con fase di drying da 200 kPa a 400 kPa di suzione.

tensione media netta, p-u_a (kPa)

Figura IV.42e: Variazioni di volume specifico d'acqua osservate nelle prove mp04RC e mp05RC, con fase di drying da 200 kPa a 400 kPa di suzione.

Figura IV.43a: Percorsi tensionali delle prove mp05RC, mp10RC e mp11RC.

Figura IV.43b: Effetto di fasi di drying e wetting (prova mp05RC) sul modulo di taglio iniziale.

Figura IV.43c: Effetto di fasi di drying e wetting (prova mp05RC) sul modulo di taglio adimensionalizzato.

Figura IV.43d: Variazioni di volume specifico osservate nelle prove mp05RC, con fasi di drying e wetting.

Figura IV.43e: Variazioni di volume specifico d'acqua osservate nelle prove mp05RC, con fasi di drying e wetting.

Figura IV.44a: Percorsi tensionali delle prove mp07RC, mp10RC e mp11RC.

Figura IV.44b: Effetto di fasi di wetting e drying (prova mp07RC) sul modulo di taglio iniziale.

Figura IV.44c: Effetto di fasi di wetting e drying (prova mp07RC) sul modulo di taglio adimensionalizzato.

Figura IV.44d: Variazioni di volume specifico osservate nelle prove mp07RC, con fasi di wetting e drying.

Figura IV.44e: Variazioni di volume specifico d'acqua osservate nelle prove mp07RC, con fasi di wetting e drying.

Figura IV.45a Percorsi tensionali delle prove mp08RC, mp10RC e mp11RC.

Figura IV.45b: Effetto di fasi di drying (prova mp08RC) sul modulo di taglio iniziale.

Figura IV.45c: Effetto di fasi di drying (prova mp08RC) sul modulo di taglio adimensionalizzato.

Figura IV.45d: Variazioni di volume specifico osservate nella prova mp08RC, con tre fasi di drying.

Figura IV.45e: Variazioni di volume specifico d'acqua osservate nella prova mp08RC, con tre fasi di drying.

Figura IV.46b: Effetto di fasi di wetting e drying (prova mp09RC) sul modulo di taglio iniziale.

Figura IV.46c: Effetto di fasi di wetting e drying (prova mp09RC) sul modulo di taglio adimensionalizzato.

Figura IV.46d: Variazioni di volume specifico osservate nelle prove mp09RC, con fasi di wetting e drying.

Figura IV.46e: Variazioni di volume specifico d'acqua osservate nelle prove mp09RC, con fasi di wetting e drying.

Figura IV.47: Fattore di smorzamento iniziale misurato nella prova mp00RC su materiale saturo.

Figura IV.48: Fattore di smorzamento iniziale misurato in fase di primo carico nelle prove a suzione 100 kPa.

Figura IV.49: Fattore di smorzamento iniziale misurato in fase di primo carico nelle prove a suzione 200 kPa.

Figura IV.50: Fattore di smorzamento iniziale misurato in fase di primo carico nelle prove a suzione 400 kPa.

Figura IV.51: Effetto della velocità di deformazione sul modulo di rigidezza iniziale.

Figura IV.52: Adimensionalizzazione del modulo di rigidezza iniziale rispetto alla velocità di deformazione.

Figura IV.53: Prova mp11RC, condotta a suzione 200 kPa. Effetto della pressione di confinamento sulle curve di decadimento.

Figura IV.54: Prova mp08RC, fasi a $p-u_a = 200$ kPa. Effetto della suzione sulle curve di decadimento.