Composto	u _v /u _{vo} a 25°C	ψ (MPa) a 25°C	Solubilità
			g/100 g H ₂ O a
			30°C
NAOH·H ₂ O	6	386	119
$LiBr_2 \cdot 2H_2O$	6	386	193
$ZnBr_2 \cdot 2H_2O$	8	347	529
KOH·2H ₂ O	9	330	126
LiCl·H ₂ O	11	303	86
CaBr ₂ ·6H ₂ O	16	351	102
LiI·3H ₂ O	18	235	170
CaCl ₂ ·6H ₂ O	29	170	170
MgCl ₂ ·6H ₂ O	33	152	58
NaI·2H ₂ O	38	133	192
$Ca(NO_3)_2 \cdot 4H_2O$	51	92	153
Mg(NO ₃) ₂ ·6H ₂ O	53	87	85
KI	69	51	153
SrCl ₂ ·6H ₂ O	71	47	57
NaNO ₃	74	41	96
NH ₄ Cl	79	32	41
KBr	81	29	71
(NH ₄)2SO ₄	81	29	78
KCl	84	24	37
Sr(NO ₃) ₂ ·4H ₂ O	85	22	89
BaCl ₂ ·2H ₂ O	90	14	38
CsI	91	13	38
KNO ₃	92	11	46
K2SO ₄	97	4.2	13

Tabella III.1: Valori di umidità relativa e suzione totale ottenuti con differenti soluzioni saline sature.

Figura III.1: Edometro a suzione controllata con la tecnica di traslazione degli assi (Balmaceda, 1991).

Figura III.2: Apparecchiatura di taglio diretto a suzione controllata con la tecnica di traslazione degli assi (de Campos e Carrillo, 1995).

Figura III.4: Cella triassiale a suzione controllata con la tecnica di traslazione degli assi (Maatouk, 1993).

1) Specimen; 2) LVDT (axial strain); 3) Laser displacement sensor (radial strain); 4) Load cell or alignment device (isotropic test); 5) Top thermocouple (external heater control); 6) Bottom thermocouple (gear pump control); 7) LVDT (vertical displacement of laser sliding subjection); 8) Confining pressure; 9) Load pressure chamber (vertical stress); 10) Air pressure; 11) Water pressure (to volume change measuring system); 12) Water pressure (to diffused air flushing system); 13) High air entry ceramic disc; 14) Coarse porous ring; 15) Confining fluid (silicone oil); 16) Silicone membrane; 17) Perspex wall; 18) Steel wall; 19) Vertical displacement electric motor; 20) Electrical connections to transducers and data acquisition system; 21) Connection to forced convection system (gear pump); 22) Connection from forced convection system (heater).

Figura III.6: Particolare del piedistallo e della testa di carico della cella triassiale a suzione controllata (Romero, 1999).

Figura III.7: Curve di calibrazione di soluzioni a diversa concentrazione di PEG (da Gens e Romero, 2000).

Figura III.8: Cella triassale a controllo osmotico della suzione (Delage et al., 1997).

Figura III.9: Edometro a controllo osmotico della suzione (Dineen e Burland, 1995).

Figura III.10: Sistema per l'applicazione della suzione con la tecnica di controllo ambientale (Romero, 1999).

Figura III.11: Edometro per terreni a grana grossa a suzione totale controllata (Alonso e Oldecop, 2000).

Figura III.12: Cella triassiale a suzione controllata tramite la tecnica della traslazione degli assi (Bishop e Donald, 1961)

Figura III.13: Sistema per la valutazione delle deformazioni radiali mediante misure di pressione differenziale (Tatsuoka, 1988).

Figura III.14: Cella triassiale a doppia camera per terreni non saturi (Wheeler, 1986).

► -valve 1-pressure gauge 2-electric relay 3-water container 4-surround pressure valve 5-percentage scale 6-rigid frame 7-axial pressure percentage scale 8- axial deformation percentage scale 9-air exit hole 10-cell 11-specimen 12-buret 13-dynamometer ring 14-exhaust water pipe 15-pressure water inlet pipe 16-water filler pipe 17-graduate 18-clutch 19-pressure hand wheel 20-motor 21-transmission case 22-porous stone 23-load disk 24-surround scale 25-water cavity 33-emulsion sleeve

Figura III.15: Cella triassiale con sistema di servo-controllo per la misura del liquido in ingresso o in uscita dalla cella (Qing e Jianqui, 1998).

Figura III.16: Misura delle variazioni del volume dell'aria di porosità a pressione atmosferica in una cella triassiale (Bishop e Henkel, 1962).

Figura III.17: Permeametro triassiale con misura locale delle deformazioni radiali (Huang et al., 1995).

Figura III.18: Sistema per lo spurgo del circuito di drenaggio (Bishop e Donald, 1961).

Figura III.19: Sistema per la misura dell'aria diffusa (Fredlund, 1975).

Figura III.20: Sezione schematica della cella triassiale per terreni non saturi (Rampino, 1997).

Figura III.22: Schema meccanico della RCTS nella configurazione per terreni saturi: (a) vista dall'alto e (b) sezione (Silvestri, 1991).

Figura III.23: Schema dei circuiti della RCTS a suzione controllata.

Figura III.24: Particolari del piedistallo in cui è alloggiata la piastra haev.

Figura III.25: Parte "A" del piedistallo.

Figura III.26: Motore elettro-magnetico per l'applicazione delle sollecitazioni torsionali.

Figura III.27: Rappresentazione schematica del sistema di misura delle deformazioni assiali e radiali.

Figura III.28: Bicchiere di misura delle deformazioni radiali.

$$\frac{\pi}{4} (D_1^2 - D_0^2) \cdot H_1 + \frac{\pi}{4} (D_t^2 - D_0^2) \cdot (H_1 - H_0) = \frac{\pi}{4} (D_b^2 - D_t^2) \cdot \Delta$$
$$\Rightarrow V_0 [(1 - \varepsilon_{rad})^2 - 1] \cdot (1 - \varepsilon_{ax}) + V_0 \left[\left(\frac{D_t}{D_0} \right)^2 - 1 \right] \cdot \varepsilon_{ax} = \Omega_b \cdot \Delta$$

dove:

$$V_{o} = \frac{\pi}{4} D_{o}^{2} \cdot H_{o}; \qquad \Omega_{b} = \frac{\pi}{4} (D_{b}^{2} - D_{t}^{2})$$
$$\Rightarrow \varepsilon_{rad} = 1 - \sqrt{1 + \frac{\Omega_{b} \cdot \Delta}{V_{o} \cdot (1 - \varepsilon_{ax})}} + \frac{\left[\left(\frac{D_{t}}{D_{o}}\right)^{2} - 1\right] \cdot \varepsilon_{ax}}{V_{o} \cdot (1 - \varepsilon_{ax})}$$
$$\varepsilon_{ax} <<1 \Rightarrow \varepsilon_{rad} = 1 - \sqrt{1 + \frac{\Omega_{b} \cdot \Delta}{V_{o}}}$$

Figura III.29: Calcolo delle deformazioni radiali sulla base delle variazioni di livello d'acqua all'interno del bicchiere di misura.

Figura III.30: Rappresentazione schematica del sistema di misura delle variazioni di contenuto d'acqua.

Figura III.31: Sistema di misura delle variazioni di contenuto d'acqua.

Figura III.34: Catena strumentale per il controllo e la misura delle pressioni e delle variazioni di stato volumetrico.

Figura III.35: Modello dinamico di riferimento per l'interpretazione delle prove di taglio torsionale (Silvestri, 1991).