

contenuto d'acqua w

Figura II.1: Rappresentazione schematica della curva di costipamento.

Figura II.2: Curve di costipamento ottenute mediante addensamento in cella triassiale di un'argilla di bassa plasticità. (da Barrera, 2002).

Figura II.3: Curve di distribuzione porosimetrica (Delage et al., 1996).

Figura II.4: Tipi di struttura: (a) dispersa, costituita da una matrice argillosa; (b) con aggregati di particelle argillose; (c) particella argillosa (Gens e Alonso, 1992).

Figura II.5: Effetto del contenuto d'acqua di costipamento sulla permeabilità dell'argilla di Siburua (Lambe e Whitman, 1969).

Figura II.6: Effetto del contenuto d'acqua di costipamento sull'angolo d'attrito ϕ^{b} (Vanapalli et al., 1996).

Figura II.7: Curve granulometriche della sabbia limosa del Metramo.

Figura II.8: Argine sperimentale sul fiume Po.

Figura II.9: Curve granulometriche del limo argilloso del Po.

Figura II.10: Fusi granulometrici dei materiali oggetto di prova.

Figura II.11: Caratteristiche di plasticità dei materiali oggetto di prova.

Figura II.12: Limo del Po: curva di costipamento Proctor standard.

Figura II.13: Curve di compressione isotropa della sabbia limosa del metramo satura, costipata all'ottimo e sul lato wet (da Rampino, 1997; Sangiuliano, 1999).

Figura II.14: Tipica relazione tensione-deformazione in una prova di taglio drenata su sabbia limosa del Metramo costipata all'ottimo satura (Santucci de Magistris, 1996).

Figura II.15: Risultati delle prove di taglio effettuate su sabbia limosa del Metramo costipata all'ottimo satura: (a) nel piano p':q; (b) nel piano v:ln(p') (Santucci de Magistris, 1996).

Figura II.16: Risultati di prove RC su sabbia limosa del Metramo satura (da d'Onofrio, 1992; Santucci de Magistris, 1996).

Figura II.17: Risultati di prove TS su sabbia limosa del Metramo satura (da d'Onofrio, 1992; Santucci de Magistris, 1996).

Figura II.18: Curve di compressione isotropa a suzione controllata della sabbia limosa del Metramo: (a) costipata all'ottimo; (b) addensata sul lato wet (da Rampino, 1997; Sangiuliano, 1999).

Figura II.19: Effetti della suzione e del contenuto d'acqua di costipamento sull'indice di compressibilità della sabbia limosa del Metramo

Figura II.20: Luogo di snervamento LC della sabbia limosa del Metramo costipata all'ottimo e sul lato wet.

Figura II.21: Risultati di una fase di taglio condotta alla suzione di 200 kPa su sabbia del Metramo addensata all'ottimo e consolidata a $(p-u_a) = 200$ kPa (Rampino, 1997).

Figura II.22: Rette di stato critico della sabbia limosa del Metramo.

Figura II.23: Risultati di una fase di taglio condotta alla suzione di 100 kPa su sabbia del Metramo costipata sul lato wet e consolidata a $(p-u_a) = 100$ kPa (Sangiuliano, 1999).

Figura II.24: Curve di compressione isotropa del limo argilloso del Po saturo (da Parlato, 2002).

Figura II.25: Risultati delle fasi di taglio condotte alla suzione di 50 kPa sul limo argilloso del Po consolidato a tensione media netta p_c , nel piano ε_a :v.

Figura II.26: Risultati delle fasi di taglio condotte alla suzione di 50 kPa sul limo argilloso del Po consolidato a tensione media netta p_c , nel piano $\varepsilon_a:v_w$.

Figura II.27: Risultati delle fasi di taglio condotte alla suzione di 50 kPa sul limo argilloso del Po consolidato a tensione media netta p_c , nel piano v: v_w .

Figura II.28: Confronto tra i risultati delle fasi di taglio condotte a suzione 50 kPa e quelli di una prova CID su limo argilloso del Po saturo consolidato a p'=200 kPa, nel piano ε_a :q.

Figura II.29: Confronto tra i risultati delle fasi di taglio condotte a suzione 50 kPa e quelli di una prova CID su limo argilloso del Po saturo consolidato a p'=200 kPa, nel piano ε_a :v.

Figura II.30: Risultati delle fasi di taglio non drenate eseguite su limo argilloso del Po saturo (da Parlato, 2002).

Figura II.31: Limo argilloso del Po: percorsi tensionali relativi a prove su materiale saturo e a suzione 50 kPa.