

Figura I.1: Rappresentazione schematica dell'acqua di menisco e di volume (da Wheeler e Karube, 1995).

Figura I.2: Struttura di un'argilla costipata (Sharma, 1998).

Figura I.3: Suzione e sue componenti (da Fredlund e Rahardjo, 1993).

Figura I.4: Relazione tra suzione totale ed umidità relativa.

Figura I.5: Effetto delle condizioni al contorno di flusso idraulico sulla distribuzione delle pressioni neutre (Fredlund, 1995).

Figura I.6: Classifica delle zone di parziale saturazione nel sottosuolo (Fredlund, 1998).

Figura I.7: Distribuzione di pressioni neutre (kPa) in un pendio costituito da terreni non saturi dopo 4.0 ore di precipitazione meteorica (Gasmo et al., 2000).

Figura I.8: Misure di suzione totale, di matrice ed osmotica realizzate su Regina clay costipata (Fredlund e Rahardjo, 1993).

Figura I.9: Configurazione dell'interfaccia aria-acqua all'interno dei pori di un terreno (Sharma, 1998).

Figura I.10: Acqua di menisco: effetto della suzione sulla distribuzione degli sforzi tra le particelle.

Figura I.11: Rappresentazione adimensionalizzata della tensione equivalente $\Delta \sigma$, effetto della suzione nell'acqua di menisco (Sharma, 1998).

Figura I.12: Menisco capillare tra particelle di argilla (Sharma, 1998).

Figura I.13: Determinazione sperimentale della superficie di stato: a) risultati di prove di compressione a suzione costante; b) risultati di prove di riduzione di suzione a tensioni nette costanti; c) rappresentazione tridimensionale (Matyas e Radhakrishna, 1968).

Figura I.14: Curve caratteristiche di quattro terreni a granulometria differente (Vanapalli et al., 1996).

Figura I.15: Determinazione del valore d'ingresso d'aria, del grado di saturazione residuo S_r : a) curva caratteristica; b) grado di saturazione efficace S_e in funzione della suzione (da Brooks e Corey, 1964).

Figura I.16: Cicli di wetting e drying a partire: a) da un punto appartenente alla curva principale di wetting; b) da un punto appartenente alla curva principale di drying (da Sharma, 1998).

Figura I.17: Curve caratteristiche di un terreno costipato a tre diversi contenuti d'acqua (Vanapalli et al., 1996).

Figura I.18: Curve caratteristiche di wetting e drying principale a volume costante (Romero e Vaunat, 2000).

Figura I.19: Prova di compressione isotropa a suzione 200 kPa realizzata su caolino addizionato con bentonite (Sharma, 1998).

Figura I.20: Variazioni di configurazione particellare dovuti ad aumento di tensione media netta (loading) e riduzione di suzione (collapse) (Gens, 1995).

Figura I.21: Influenza della tensione media netta sui fenomeni di rigonfiamento e collasso: a) percorsi di sollecitazione b) comportamento osservato nei percorsi FD e FIG (Josa et al., 1987).

Figura I.22: Collasso per saturazione in prove edometriche a suzione controllata (Suriol et al., 1998).

Figura I.23: Effetti di cicli di wetting e drying su un'argilla fortemente espansiva (Chu e Mou, 1973).

Vertical stress (MPa)

Figura I.24: Effetti di cicli di wetting e drying su un caolino costipato: a) percorso di sollecitazione b) risultati sperimentali (Alonso et al., 1990).

Figura I.25: Cicli di wetting e drying su Boom clay (Alonso et al., 1995).

Figura I.26: Relazione tra curva caratteristica e resistenza a taglio per una sabbia ed un'argilla (Fredlund, 1995).

Figura I.27: Definizione dei parametri equivalenti (Silvestri, 1991).

Figura I.28: Andamenti qualitativi di rigidezza a taglio, fattore di smorzamento e sovrappressioni neutre con il livello di deformazione (Vinale et al., 1995).

Figura I.29: Effetto della storia tensionale sulla rigidezza a taglio di quattro terreni a grana fina (Rampello et al., 1995).

Figura I.30: Correlazione tra $\gamma_L e \gamma_V e$ l'indice di plasticità (Vinale et al., 1995).

Figura I.31: Effetto del grado di saturazione sulla rigidezza a taglio di un limo (Wu et al., 1985).

Figura I.32: Effetto della suzione sulla rigidezza dell'argilla di Londra costipata a diversi contenuti d'acqua (Marinho et al., 1995).

Figura I.33: Determinazione del luogo di snervamento LC a partire dalla famiglia di rette vergini (da Vaunat et al., 2000).

Figura I.34: Relazione tra le tensioni di snervamento $(p-u_a)_o e (p-u_a)^*_o$: a) curve di compressione isotropa per terreno saturo e parzialmente saturo; b) percorso di sollecitazione e curva di snervamento (da Alonso et al., 1990).

Figura I.35: Luogo di snervamento Loading – Collapse.

Figura I.36: Risposta del modello di Alonso et al. (1990) per aumento di tensione media netta e riduzione di suzione: a) percorsi di sollecitazione; b) relazioni volume specifico – tensione media netta.

Figura I.37: Risposta del modello di Alonso et al. (1990) per aumento di tensione media netta ed aumento di suzione: a) percorsi di sollecitazione; b) relazioni volume specifico – tensione media netta.

Figura I.38: Luogo di snervamento nello spazio (p-ua):q:s (da Alonso et al., 1990)

Figura I.39: Luogo di snervamento nei piani (p-u_a):q e (p-u_a):s (da Alonso et al., 1990).

Figura I.40: Luogo di snervamento relativo alla generica suzione s (da Wheeler e Sivakumar, 1995).

Figura I.41: Meccanismo di allagamento (a) e svuotamento (b) di un vuoto tra particelle solide (Buisson e Wheeler, 2000).

Suction, s

Figura I.42: Rappresentazione elasto-plastica del fenomeno di isteresi idraulica (Buisson e Wheeler, 2000).

Figura I.43: Curve caratteristiche della Boom clay: dati sperimentali ed espressioni interpolanti (Vaunat et al., 2000).

Figura I.44: Risposta nel modello nel piano volume specifico d'acqua – suzione (da Vaunat et al., 2000).

Figura I.45: Forma delle curve di snervamento SI e SD nel piano tensioni medie nette - suzione (Vaunat et al., 2000).

Figura I.46: Evoluzione del luogo di snervamento nel percorso ABCD (Chen et al., 1999).

Figura I.47: Percorsi tensionali adoperati per individuare il luogo di snervamento (da Sivakumar e Ng, 1998).

Figura I.48: Luogo di snervamento unico, unione delle curve LC ed SI (da Sivakumar e Ng, 1998).

Figura I.49: Effetto di cicli di wetting e drying (percorso abcde) su volume specifico e grado di saturazione (Sharma, 1998).

Figura I.50: Modello concettuale di Sharma (1998): comportamento lungo un percorso ABC di wetting e drying, a pressione media netta $(p-u_a)$ costante, interno al luogo di snervamento.

Figura I.51: Modello concettuale di Sharma (1998): snervamento per effetto di un percorso di drying a pressione media netta $(p-u_a)$ costante.

Figura I.52: Modello di Gallipoli et al. (2002): linee di compressione vergine a suzione costante nel piano e-ln(p") (dati sperimentali di Sivakumar, 1993).

Figura I.53: Modello di Gallipoli et al. (2002): risposta del modello per cicli di wetting e drying (dati sperimentali di Sharma, 1998).