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1            Introduction 

 Nowadays, agriculture is increasingly focused on the quality of products and on the 
environmental, hygienic and sanitary aspects. Therefore, agricultural practices are 
moving toward a sustainable management of the agricultural crops, in order to 
ensure quantitative and qualitative product properties. In this context, the main 
objective of agriculture is to suggest techniques and technologies able to guarantee 
environmental, human and animal protection. In the agri-food sector, the European 
Community approved numerous legislative dispositions (e.g. Reg. 1095/07 e 
33/2008) and has recently indicated the new objectives of scientifi c and technologi-
cal research in the agricultural sector (Horizon Program 2020). Crop management 
is actually carried out by chemical products that ensure an effi cacious plant protec-
tion but often interfere with the other biological components of the environment, 
determining irreversible imbalances. In addition, these products can cause serious 
risks for consumer’s health as a consequence of the residues in food products. From 
this scenario, it emerges the need of a gradual decline in the use of chemical tools in 
agriculture and specifi cally in the control of plant diseases. During the last decade, 
the studies on alternative environmental friendly technologies have received a 
strong impulse and have proposed a wide range of options, including agronomical, 
physical and biological control means (Verma et al.  2007 ; Shoresh et al.  2010 ; 
Bharti et al.  2013 ; Yeoh et al.  2013 ). Recently, it was growing the idea that the plants 
have enormous self-defence potentiality, and this would allow a natural disease con-
trol with positive effects on environmental and human health safeguard (Hogekamp 
and Küster  2013 ; Estrada et al.  2013 ; Wu et al.  2013 ). 
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 The studies on the biochemical mechanisms associated to systemic resistance in 
plants could allow individuating new control strategies against plant pathogens and 
parasites, based on the exploitation of the natural mechanisms of plant defence. This 
type of resistance mechanism, already documented by Ross ( 1961 ), is known as 
“systemic acquired resistance” (SAR); it is effective against a wide range of patho-
gens and its action differs in relation to the inducer agent.  

2     Systemic Acquired Resistance and SAR 
Second Messengers 

 Systemic acquired resistance (SAR) against pathogens is associated with the expres-
sion of pathogenesis-related (PR) genes that are considered molecular markers of 
SAR (Van Loon and Van Strien  1999 ). The activation of PR genes is in turn medi-
ated by endogenous salicylic acid (SA) as molecule involved in signal transduction. 
The fi rst step is the activation of calcium channels in plasmalemma, mediated by G 
proteins (pathogen protein) (Legendré et al.  1992 ). The increase of cytoplasmatic 
calcium concentration stimulates the superoxide anion production (O 2  − ), a reactive 
oxygen species (ROS) (   Schwacke and Hager  1992 ). The O 2  −  released into the apo-
plast is dismutated in H 2 O 2  naturally or by the action of the enzyme family of super-
oxide dismutase (SODs) (Buonaurio et al.  1987 ; Scandalios  1993 ). Then, the H 2 O 2  
can be in turn reduced to water and molecular oxygen by enzymatic and nonenzy-
matic plant antioxidant defences, such as catalase (CATs) (Scandalios et al.  1997 ) 
and ascorbate peroxidase (APXs) (Asada  1992 ), ascorbic acid, tocopherols, fl avo-
noids and anthocyanins (Dixon and Paiva  1995 ; Noctor and Foyer  1998 ). The radi-
cal (OH − ), a strong oxidant, is obtained from H 2 O 2 , by Hebert–Weiss and Fenton’s 
reactions, completing the reaction chain that is known as oxidative “burst” (Bolwell 
et al.  1999 ). Among ROS, H 2 O 2  plays a predominant and diversifi ed role in the 
events which lead to induction of resistance and to the transduction of the molecular 
signal of defence gene activation (Van Breusegem et al.  2001 ). 

 The main messengers of SAR are salicylic acid (SA), jasmonic acid (JA), ethyl-
ene (C 2 H 2 ) and nitric oxide (NO) (Fragnière et al.  2011 ). An excessive ROS produc-
tion may cause negative effects on the plant cells. The antioxidant systems control 
the cellular ROS concentration to avoid their potential toxicity. CATs and peroxi-
dases (POXs) are the most important enzymes which allow removing H 2 O 2 . Because 
SAR is a normal answer in plant defence, it can be artifi cially induced by pathogen 
pre-inoculations or using chemical inducers of acquired resistance (Kuć  1982 ), such 
as beta-aminobutyric acid (Cohen  2002 ), benzothiadiazole (Ryals et al.  1996 ) and 
2,6-dicloisonicotinic acid (Kauss et al.  1992 ). It is known that SA-induced resis-
tance to viruses in tobacco and  Arabidopsis thaliana  is mediated in part by a path-
way that appears to involve signals transduced through changes in ROS (Singh et al. 
 2004 ). Indeed, SA impedes electron fl ow through the respiratory electron transport 
chain and enhances ROS levels in the mitochondria (Mayers et al.  2005 ). SA-induced 
resistance to  Tobacco mosaic virus  (TMV) is altered in transgenic tobacco plants 
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with altered levels of alternative oxidase (AOX), an enzyme that negatively  regulates 
mitochondrial ROS levels (Gilliland et al.  2003 ). In  Arabidopsis thaliana , as in 
tobacco, SA treatments inhibited the systemic movement of  Cucumber mosaic virus  
(CMV). In addition, in squash SA-induced resistance to CMV and this was most 
likely due to inhibition of viral cell-to-cell movement. This means that the mecha-
nisms of SA-induced resistance may differ markedly between host species (Mayers 
et al.  2005 ) and they are very poorly known.  

3     Biostimulant Microorganisms and Their Importance 
in Sustainable Agriculture 

 Some microorganisms and the molecules they produce are able to biocontrol plant 
pathogens by inducing SAR and thus can be defi ned as biocontrol microorganisms 
(BCMs) (Vargas et al.  2008 ; Shoresh et al.  2010 ; Amaresan et al.  2012 ). Current 
biocontrol studies have confi rmed the effectiveness of  Bacillus  spp.,  Trichoderma  
spp. and  Glomus  spp. in the plant protection not only against a wide range of patho-
gens fungi (Avis et al.  2008 ; Akrami et al.  2011 ; Hernández-Suárez et al.  2011 ) but 
also against bacteria (Avis et al.  2008 ; Segarra et al.  2009 ; Berić et al.  2012 ) and 
viruses (Wang et al.  2009 ; Luo et al.  2010 ; Wang et al.  2011 ; Elsharkawy et al. 
 2012 ), likely due to the induction of plant resistance mechanisms similar to SAR, 
hypersensitive response (HR) and induced systematic resistance (ISR) (Kaewchai 
et al.  2009 ). On the other hand, some fungal BCMs are able to promote plant growth 
and development, so acting as plant growth-promoting microorganisms (PGPMs), 
that in turn determines a higher tolerance of the plants against abiotic stresses, such 
as drought and salinity. 

 Both BCMs and PGPMs can be defi ned as “biostimulant microorganisms”, able 
to foster plant growth and defence against pathogens throughout the crop life cycle, 
from seed germination to plant maturity. The study of the biochemical and molecu-
lar mechanisms involved in host−pathogen−antagonist interaction is essential for 
understanding the dynamics of infectious processes and can be useful for develop-
ing new strategies for the control of plant pathogens. At the same time, innovative 
methodologies and practices aimed to increase plant tolerance against abiotic 
stresses are required in sustainable agriculture. 

 The borderline between BCMs and PGPMs is not well defi ned. Indeed, BCMs, 
whose main action is to prevent or inhibit the growth of pathogens by SAR, exercise 
“indirect” benefi ts on plant growth by antibiosis based on the production of hydro-
lytic enzymes or inhibiting substances. These indirect effects have been clarifi ed 
only in part, and even less is known regarding the “direct” effects of BCMs on the 
improvement of plant growth through production of siderophores and phytochela-
tins, which chelate metals and make them available to the roots. The most interest-
ing PGPMs are those able to colonise the rhizosphere. This latter is particularly rich 
in nutrients and supports a microbial population that can exert positive effects on the 
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physiological state of the roots, on the absorption of nutrients and on plant tolerance 
to environmental stresses. A particular attention should be given to endomycorrhi-
zal ( Glomus  spp.) and rhizosphere (Trichoderma spp.) coloniser,    that could allow 
plants to achieve optimum yields. 

 The SAR represents a valid opportunity in plant natural protection. Therefore, 
the research activities should be oriented to the use of BCMs as inducers of SAR in 
agronomically important species against some of their most severe pathogens. 
Among BCMs, the most used in sustainable agriculture practices belong to  Bacillus  
spp.,  Trichoderma  spp. and  Glomus  spp. (Djonović et al.  2007 ; Samolski et al.  2009 ; 
   Ambrico and Trupo  2011 ; Dichio et al.  2012 ; Bonneau et al.  2013 ; Li et al.  2013 ). 
Research data accumulated in the past few years have produced a completely novel 
understanding of the way by which bacteria and fungi interact not only with other 
microbes but also with plants and soil components. This has opened an avenue of 
new applications, in both agriculture and biotechnology that exploit the ability of 
biostimulant microorganisms to change plant metabolism and resistance to biotic 
and abiotic stresses (Woo et al.  2006 ).  

4      Bacillus ,  Trichoderma  and  Glomus spp . 

 The bacteria belonging to  Bacillus  spp. are ubiquitous microorganisms, present in 
the soil and in the phylloplane, and they are also able to live as endophytes. They 
have been studied for their antagonistic activity and induction of plant resistance 
against stresses. In the last years, endophyte isolates of  B .  subtilis  (ET-1), able to 
control several diseases caused by leaf and soil pathogens, have been identifi ed 
(Felici et al.  2008 ; Ambrico et al.  2010 ; Ambrico and Trupo  2011 ). Many  Bacillus  
isolates can promote plant vegetative development by producing several extracel-
lular substances, so acting as plant growth-promoting microorganisms (PGPMs). 

  Trichoderma  spp. and  Glomus  spp. are some of the most abundant fungi found in 
many soil types, able to colonise plant roots and plant debris (Harman et al.  2004 ). 
They are agriculturally and industrially important, being the major source of many 
commercial biostimulants and biofungicides. These fungi are rarely causes of plant 
diseases (Gams and Bissett  1998 ). On the contrary, many  Trichoderma  and  Glomus  
species (e.g.  T. harzianum, T. viride, G. intraradices ) are strong BCMs against bac-
teria, fungi and nematodes, and for this reason more than 60 % of all registered 
biostimulants used for plant disease control are  Trichoderma - and/or  Glomus -based 
(Verma et al.  2007 ; Shoresh et al.  2010 ; Bharti et al.  2013 ; Estrada et al.  2013 ). 
Many studies considered the use of proteomic and functional genomic analysis in 
the attempt to obtain a complete picture of the changes that occur in the expressions 
of fungus, plant and pathogen when they interact each other, especially when an 
increase in disease resistance is generated (Grinyer et al.  2005 ; Woo et al.  2006 ; 
Yeoh et al.  2013 ; Leung et al.  2013 ). However, the mechanisms of the interaction 
 Trichoderma-/Glomus -plant pathogen are very complex and includes not only the 
mycoparasitism but also competition for nutrients, release of extracellular  hydrolytic 
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enzymes, antagonism against nematodes, colonisation of rhizosphere and phyllo-
sphere, production of secondary metabolites that are toxic to plant pathogens, pro-
motion of plant growth and root development and induction of systemic resistance 
against different pathogens (Harman et al.  2004 ; Mathivanan et al.  2008 ; Dutta and 
Podile  2010 ; Estrada et al.  2013 ). 

 The saprophytic fungi belonging to  Trichoderma  spp. can grow along the entire 
length of the root system along which it establishes a barrier against pathogen attack 
(Harman et al.  2004 ). Overall morphology and metabolism of plant inoculated with 
 Trichoderma harzianum  showed an increase in root growth and cell wall suberifi ca-
tion in the exoderm and endoderm (Sofo et al.  2011 ,  2012 ) and the induction of the 
synthesis of antimicrobial phenolic compounds (Mathivanan et al.  2008 ). 
Furthermore, the cloning and functional characterization of a gene ( Sm1 ) from 
 Trichoderma virens  that codes for a cerato-platanin has more recently allowed the 
identifi cation of a novel proteinaceous nonenzymatic elicitor that triggers SAR in 
plants (Djonović et al.  2007 ).  Trichoderma  spp. are also important for their ability 
to synthesise peptaibols, a family of peptides with antibiotic function characterised 
by short chain lengths (<20 residues), C-terminal alcohol residues and high levels 
of nonstandard amino acids (Whitmore and Wallace  2004 ). Their antibiotic function 
arises from their membrane-insertion and pore-forming abilities, and it has been 
shown that peptaibols produced by  Trichoderma pseudokoningii  can induce pro-
grammed cell death in plant fungal pathogens (Shi et al.  2012 ). 

 The endomycorrhizal fungi belonging to  Glomus  spp. form a hyphal network 
that can obtain and transport nutrients, propagate the association and interconnect 
plants (Newman  1988 ). The production of plant-external hyphae varies according to 
the species and isolates of  Glomus , can be infl uenced by soil properties and is an 
important determinant of mutualistic effectiveness (Kogel et al.  2006 ). The mycor-
rhization of plants by  Glomus  makes possible an enduring protection of cultivated 
plants against pathogens and a better use of nutrients, so improving plant tolerance 
to the diseases and to abiotic stresses and increasing plant productivity and quality 
in degraded soils (Datnoff et al.  1995 ; Augé  2001 ; Estrada et al.  2013 ). 

 It was recently discovered that plant mycorrhization with  Glomus  and soil colo-
nisation by  Trichoderma  enhanced plant growth, in terms of total biomass and root 
development, by about 20 % and 30 %, respectively (Sofo et al.  2010 ).  Trichoderma 
harzianum  strain T-22 enhances root growth in both herbaceous (Fig.  5.1 ) and tree 
species (Fig.  5.2 ).

    The ability of all these PGPMs in modulating plant defence mechanisms by the 
activation of the hypersensitive response (HR) and the induced systemic resistance 
(ISR) was demonstrated, but the details of this PGPM-plant molecular dialogue are 
poorly known, and many defensive compounds are likely to exist but remain to be 
identifi ed. It seems that both SAR and ISR are intertwined molecularly and that a 
key role in plant defence mechanisms is played by molecules with signal functions, 
such as phytohormones (Vallad and Goodman  2004 ; Krouk et al.  2011 ). Moreover, 
the crosstalk between the different plant hormones, whose levels change after plant 
inoculation with PGPMs, results in synergetic or antagonistic interactions that play 
crucial roles in response of plants to abiotic stress, such as drought, salinity and 
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toxic metals (Baroni et al.  2004 ; Peleg and Blumwald  2011 ). Thus, plant hormones 
play central roles in the ability of plants to adapt changing environments by mediat-
ing growth, development, nutrient allocation and source/sink transitions. Recently, 
the changes in phytohormone levels, particularly auxins and cytokinins have been 
demonstrated to be one of the direct mechanism by which  Trichoderma harzianum  
promotes plant growth (Sofo et al.  2011 ). On this basis, the differences between 
BCMs and PGPMs seem to be increasingly blurred and their mechanisms of action 
appear to be overlapped.  

5     Case Studies and Applications with Biostimulant 
Microorganisms 

 In BCM-inoculated plants, important physiological and biochemical parameters 
should be considered to individuate the degree of response against the pathogens 
under study. Notably, the integrity and functional status of the photosynthetic 
machinery, the assimilation, respiration and transport process and the mechanisms 
of photo-inhibition and photo-oxidation are of key importance in this kind of 
researches. Moreover, in the same plant systems, qRT-PCR-based gene transcripts 
analyses should be carried out to identify genes important for SAR induction, such as 

  Fig. 5.1    Root growth in lettuce, tomato and tobacco seedlings observed after 25, 21 and 20 days, 
respectively, from the inoculation with  Trichoderma harzianum  strain T-22 ( below ) and in unin-
oculated controls ( above )       
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those associated with ROS (e.g. coding for SODs, CAT, POXs, etc.), PR proteins 
and peptides (e.g. chitinases, glucanases, ceratoplatanins, peptaibols, phytoalexins), 
phenylpropanoid (e.g. phenylalanine lyase, chalcone synthase) and phytohormones 
synthesis. Time course transcriptional analyses has to be performed in accordance 
to the progression of the infection and appearance of phenotypic and biochemical 
markers of damage. Genes known to be involved into metabolic processes underly-
ing the plant−pathogen−antagonist interactions or the tolerance against abiotic 
stresses should be retrieved from public gene and EST databases. If not present in 
public databases, target genes from each plant species investigated can be amplifi ed 
and cloned using sequence information from model species. 

 In plants subjected to different types of abiotic stress, comparative proteomics 
experiments should be carried out to identify specifi c proteins involved in plant 
resistance against pathogens, drought, salinity and other stresses. For this analysis, 
2D-electrophoretic cells, protein fractionation and isoelectric focusing techniques 
and MALDI-TOF MS are commonly used. Accurate microscopic analyses should 
be carried out through electron (SEM and ESEM), epifl uorescence and light micro-
scopes in order to ascertain BCMs/PGPMs persistence and evaluate their 

  Fig. 5.2    ( On the left ) Mean root length (± standard error,  n  = 100) in in vitro cultured GiSeLa6® 
(cherry) and GF677 (peach) rootstocks inoculated with  Trichoderma harzianum  strain T-22 ( white 
columns ) and in uninoculated controls ( black columns ). For each treatment, mean values followed 
by a different lower-cased letter are signifi cantly different at  P  < 0.05 according to Fisher’s LSD 
test. ( On the right ) Root growth of GiSeLa6® and GF677 rootstocks inoculated with  Trichoderma 
harzianum  strain T-22 and in uninoculated controls observed after 9 days from inoculation. The 
medium was agarised Murashige and Skoog medium without vitamins and supplemented with 
indole-3-butyric acid       
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 colonisation. Finally, comparative proteomics experiments are of primary impor-
tance to identify specifi c proteins involved in the common response (overlapping) 
against biotic and abiotic stresses.  

6     Conclusions and Future Perspective 

 From an environmental point of view, the use of biostimulant microorganisms is an 
agronomic practice able to preserve natural resources and, due to reduced use of 
pesticides and fertilisers, to maintain soil fertility and safeguard human health. 

 The studies on biostimulant microorganisms can allow to discover new formula-
tion of bioactive compounds. At the same time, the application of this innovative 
knowledge will foster the use of biostimulant microorganisms in agriculture, with 
evident benefi ts on soil fertility, natural resources saving, food safety and human 
health. In this way, biostimulant microorganisms can act on the plants through dif-
ferent pathways to improve crop vigour, yields and quality, increasing plant toler-
ance and recovery from biotic and abiotic stresses. This could ameliorate plant 
physiological status, facilitate nutrient assimilation, translocation and use and 
improve plant water balance, so increasing plant survival in the absence of pesti-
cides and with a reduced chemical fertilisation. Furthermore, the antiviral effects of 
these biostimulant microorganisms and the associated biochemical and molecular 
mechanisms implicated are still scarcely known and could be of key importance in 
the biological pest control. Finally, the identifi cation of elicitor-like substances pro-
duced by the studied BCMs and involved in defence responses against pathogens 
will be an important applied research fi eld in the next future.     
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