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Introduction

The existence of life on earth depends on the interaction of environment and living organisms 
and unless this is maintained at a steady balance this whole existence is at risk. Fast changing 
environment, increasing population, urbanization and a multitude of related factors affect 
food productivity by plants – the main food factory of the earth. What is of major concern is the 
ever-increasing population, projected to be around 9.2 billion by 2050, making demands on 
food production on the one hand, coupled with decreasing crop productivity on the other. In 
this scenario, looking for ways and means of maintaining sustainable food production seems a 
daunting task. Abiotic stresses, mainly due to changing climatic conditions, provide the main 
challenge to sustainable agriculture. Plant abiotic stressors include: fluctuating temperatures, 
from very low to extremely high; water level shifts, ranging from water scarcity to flooding; 
excessive soil salinity, caused in part by prolonged use of irrigation water and low quantities 
of rainfall, combined with rising saline groundwater levels; heavy metals and other pollutants 
in soil and air etc. Fortunately for life on earth, many plants are resilient and have developed 
degrees of tolerance to such stresses. The major thrust for increasing food productivity would 
be to accelerate such tolerance or resistance mechanisms in the plant at physiological, cellular 
or molecular levels, leading to improved crop health. However, sufficient caution has to be 
exercised while dealing with the intricate molecular mechanisms in the plant, as interference 
in nature’s mechanisms may sometimes be counter-productive. To this end, scientists across 
the globe are working on developing tools for engineering enhanced resistance of plants 
against abiotic stresses with subsequent increase in productivity.

This book is a compilation of articles that focus on the above problem and will give an 
overall perspective on the current progress being made in the area of abiotic stresses and their 
management for sustainable agriculture. The 15 chapters in the book are divided into three 
sections: Temperature, water and salinity stress; Heavy metals and ozone; and General abiotic 
stresses and their alleviation by microbes.

The section on temperature, water and salinity stress covers seven chapters and occupies 
the bulk of the book. All the three major abiotic stresses have been clubbed together as there is 
a definite interrelationship among all three. Elevated temperatures can lead to rapid water loss, 
which in turn leads to drought conditions. Similarly, excess salinity also reduces available water 
to the plant, leading to symptoms related to water deficiency. The first chapter in this section 
deals with heat-shock proteins (Hsps), which show accelerated synthesis and accumulation in 
eukaryotes immediately following hyperthermia and confers thermotolerance as well as the 
capacity to withstand subsequent exposure to lethal temperature and other metabolic insults. 

 ix



x Introduction 

Many of the Hsps on the other hand, are molecular chaperones with vital functions in metabolic 
pathways, signal transduction, cell proliferation, differentiation and apoptosis under permis-
sive growth conditions. Understanding the role of Hsps in thermotolerance can lead to devel-
opment of strategies for induction of heat tolerance in plants. The reproductive phase in crops 
is particularly vulnerable to heat and drought stress and their combination, and in the second 
chapter the authors discuss how the interplay between leaf senescence, oxidative stress and 
sugar signalling in reproductive tissues contributes towards reduction in growth and yield in 
heat-stressed plants.

Both an excess and a deficit of water are abiotic stressors. Three chapters are devoted to 
this specifically. Chapter 3 will detail our understanding of the roles of nitric oxide, ethylene 
and haemoglobin in flooding stress and consider how this can be exploited in breeding pro-
grammes and sustainable agricultural practice. Nitric oxide (NO) has been shown to trigger 
the biosynthesis of ethylene during stress and also play key roles in programmed cell death 
and the hyponastic response. It is discussed as to how the expression of non-symbiotic haemo-
globins which oxidize NO to NO3 play an important role in controlling NO production and 
thus ethylene-mediated responses to submergence. In Chapter 4, the authors focus on the de-
fence mechanisms against stresses at the molecular level, with special reference to oxylipin 
metabolism, which according to the authors, represents one of the main defence mechanisms 
employed by plants. One of the members of this family, jasmonic acid, is well known to be in-
volved in resistance to both abiotic and biotic stresses. Authors have taken the specific example 
of chickpea hybrids to illustrate the roles. In Chapter 5, the authors discuss how, in contrast to 
conventional breeding techniques, genetic engineering offers a fast and efficient tool to pro-
duce drought-resistant and drought-tolerant plants and thus improved water uptake, use and 
retention by plants. In order to genetically manipulate plants to be drought tolerant or resist-
ant, genes from the plants that are tolerant or even from other organisms can be selected, which 
can be grouped into three drought-tolerance engineering strategies: the engineering of functional 
proteins, manipulating the expression of transcription factors and the regulation of signalling 
pathways involved in drought tolerance. Chapters 6 and 7 deal with salinity. In Chapter 6, the 
authors provide an overview of the physiological, biochemical and molecular mechanisms 
underlying salt tolerance, combining knowledge from classic physiology with information 
from recent findings. Special emphasis has been given on salt signal perception and transduc-
tion and mechanisms related to maintenance of osmotic, ionic, biochemical and redox hom-
oeostasis in salt-stressed plants. A fundamental biological knowledge in conjunction with the 
understanding of the salt-stress effects on plants is necessary to provide additional informa-
tion for the dissection of the plant response to salinity and in trying to find future applications 
for reducing the deleterious effects of salinity on plants, improving the productivity of species 
important to agricultural sustainability. In Chapter 7, based on results from sugarcane, the au-
thors discuss the results that indicate that the salt tolerance of a variety depends on the stage 
of development and the level considered. Consequently, salt tolerance of a given cultivar at 
whole-plant level does not guarantee salt tolerance of tissue or cell cultures issued from this 
cultivar.

The section on heavy metals, ethylene and ozone consists of four chapters, which deal 
with the negative effects of heavy metals and air pollutants. Chapter 8 deals with ozone 
phytotoxicity caused mainly because of its high oxidation potential to generate reactive oxy-
gen species in exposed plant tissue. The balance between the production and the scaven-
ging of activated oxygen is crucial to plant growth maintenance and overall environmental 
stress tolerance. While increased accumulation of plant secondary metabolites in leaves in 
response to ozone exposure has been reported, the changes on crop plants’ composition and 
nutritional quality needs to be further studied and discussed to guide our efforts to select 
ozone-tolerant crops in an attempt to provide a secure food supply for a developing world. 
Chapters 9 and 10 deal with heavy metal toxicity including cadmium and arsenic among 
others. In Chapter 9, the authors have mainly focused on the interactive role of ethylene, 
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sulfur, antioxidant system and tolerance of cadmium in plants. Ethylene is the gaseous 
plant hormone and is now considered to regulate many plant developmental processes 
throughout the plant’s life from germination to senescence and also mediate the plant’s re-
sponses to abiotic and biotic stress. The basic mechanisms and functional genomics perspective 
underlying heavy metal toxicity in plants, knowledge of which is essential for development 
of sustainable agriculture, are dealt with in Chapter 10. Several genetic studies have re-
vealed major signalling pathways that are interconnected and lead to multiple responses in 
plants under heavy-metal stress. Functional genomics is now considered as an important 
dissecting tool to understand heavy-metal toxicity as well as tolerance in plants. In Chapter 11, 
the author has dealt with the negative effects of arsenic, which is a naturally occurring 
highly toxic metalloid to all forms of life, taking the example of the growth and metabolism 
of cereals and pulses. Combined application of phosphate with arsenate can ameliorate the 
damaging effects caused by arsenate treatment alone in cereal and legume seedlings. Hence, 
the use of phosphate-enriched fertilizers in arsenic-contaminated soil may help normal 
growth of cereals and legumes.

In the final section, which deals with abiotic stresses in general and their alleviation by 
microbes, four chapters have been included. In Chapter 12, the authors have focused mainly 
on recent information about the effects of abiotic stress on plant growth, water relations and 
photosynthesis, as well as mechanisms of adaptation. The higher acclimation capacity, and 
hence greater resistance to a given stress factor, is determined by the plant’s capacity to 
maintain its physiological processes within the reaction norm, at a greater variation of this 
factor. Chapter 13 deals with small molecules such as polyamines, which may play a defini-
tive role in protective or adaptive mechanisms that combat the potential stress-induced in-
juries in plants encountering abiotic stresses regularly under natural conditions apart from 
abrupt natural calamities for which the plant may not be prepared. Moreover, it is appre-
hended that PA-ROS-mediated signalling under stress may have a cross-talk with the phyto-
hormones, figuring a further complex network of signalling for stress tolerance, analysis of 
which will be a challenging task in near future. The last two chapters deal with a recent, 
ecofriendly, cost-effective mechanism for stress alleviation through the use of beneficial soil 
microbes. Chapter 14 deals with the potential of Trichoderma harzianum to directly increase 
plant tolerance against abiotic stresses, such as drought, salinity and soils with low fertility, 
though traditionally it has been successfully used for the biological control of many plant 
pathogens through chemiotropic mycoparasitic interactions with the target fungal or bacter-
ial organism. This could promote a rational and non-empirical inclusion of this important 
fungal species in modern agricultural sustainable practices. The possibility that soil micro-
organisms could play a significant role in evolving efficient low-cost technologies for abiotic 
stress management has been dealt with in Chapter 15. Their unique properties of tolerance 
to extremities, their ubiquity, genetic diversity and their interaction with crop plants can be 
exploited in order to develop methods for their successful deployment in agricultural pro-
duction. Soil microorganisms can help crops withstand abiotic stresses, such as drought, 
chilling injury, salinity, metal toxicity and high temperature, through different mechanisms 
such as the induction of osmo-protectants and Hsps etc. in plant cells more efficiently. This 
ability in alleviating abiotic stress conditions in different crop systems can be used for 
cost-effective sustainable agriculture.

We have endeavoured to compile this book taking a holistic approach from basics to ad-
vanced technologies, with the main objective being to put together sufficient information on 
how to take forward sustainable agriculture in the face of mild to extreme environmental 
changes occurring in nature. The whole book is well focused and offers insights into the vari-
ous factors reducing crop productivity and highlights different mechanisms of resistance and 
approaches that could be used in sustainable agriculture. The editors and authors hope that 
this book will be of use to agricultural scientists, the agro-industry, academicians and re-
searchers working in the area of abiotic stress and its management.



xii Introduction 

We would like to thank all the authors who responded in time, which made it possible to 
bring out this book within the prescribed time. Finally, it is our pleasure to thank CABI for 
making this possible. Special thanks are also due to Dr Sreepat Jain, Commissioning Editor, 
CABI and Emma McCann, Editorial Assistant, CABI for their involvement at various stages of 
publication.

Usha Chakraborty
Bishwanath Chakraborty



About the Editors

 xiii

Dr Usha Chakraborty, an MSc Gold Medallist of Calcutta University, is Professor of Plant Bio-
chemistry in the Department of Botany, University of North Bengal, Siliguri. She joined the 
department as a lecturer in 1986 and has since been Head of the Department of Botany twice, 
been member of University Court, Executive Council and has generally been involved in uni-
versity administration at various levels. Currently, she is the Programme Co-ordinator of UGC 
SAP DRS-III level. Her main research focus is on the elucidation of mechanisms of abiotic and 
biotic stress responses in plants and development of markers for tolerance. She is also engaged 
in research on crop improvement through biological means and determination of mechanisms 
of action of such plant growth promoting rhizobacteria. To date, 22 students have received 
PhD under her guidance and many more are registered. She has published more than 120 re-
search papers in national and international journals, 14 chapters in books and three edited 
books. She has travelled widely in Canada, USA, Malaysia, UK, Japan, Russia, Italy, China and 
made representation in International forums. Dr Chakraborty has been elected as Fellow of 
IPS, ISMPP and Royal Society of Chemistry, London.

U. Chakraborty



xiv About the Editors 

Dr Bishwanath Chakraborty is Professor of Plant Pathology in the Department of Botany, Uni-
versity of North Bengal, Siliguri. He has served the institution in various capacities, namely 
Dean, Faculty of Science; Director, Centre for Development Studies, Programme Coordinator, 
SAP of the UGC on the subject of Microbiology including mycology and plant pathology and 
plant diversity. He has to his credit over 140 research papers published in national and inter-
national journals, ten review articles, 15 chapters in books, four edited books which have 
opened up a new line of research on molecular plant pathology and fungal biotechnology. 
Twenty six students obtained PhD under his guidance. He has travelled widely in Japan, 
 Canada, USA, UK, Germany, Australia, Italy, Russia, New Zealand and made representation 
in International forums and established International Collaboration in UK and Canada. 
Dr Chakraborty has been elected as Fellow of IPS, ISMPP, West Bengal Academy of Science 
and Royal Society of Chemistry, London.

B. Chakraborty



© CAB International 2015. Abiotic Stresses in Crop Plants  
222 (eds U. Chakraborty and B.N. Chakraborty)

14.1 Introduction

Plant life on emerged land has made been 
possible by the symbiosis between plants and 
related microorganisms. Mycorrhization is the 
demonstration of the importance in establishing 

symbiosis between root system and some 
microorganisms, which makes possible an en-
during protection of cultivated plants and 
a better use of nutrients, so improving plant 
tolerance to diseases. It is a symbiotic rela-
tionship between the mycelium of a fungus 

14 Indirect and Direct Benefits of the  
Use of Trichoderma harzianum Strain T-22  
in Agronomic Plants Subjected to Abiotic  

and Biotic Stresses

 Antonella Vitti, Maria Nuzzaci, Antonio Scopa and Adriano Sofo*
School of Agricultural, Forestry, Food and Environmental Sciences,  

University of Basilicata, Potenza, Italy

Abstract
Biological control of several plant diseases has been successfully achieved by the use of Trichoderma 
harzianum strain T-22, which acts through chemiotropic mycoparasitic interactions with the target fungal 
or bacterial organism. Since this strain can colonize the roots of most plant species across a wide range of 
soil types, it is particularly important for agronomic purposes. On the other hand, the study on the effect of 
T-22 or its derived substances against plant viruses (e.g. Cucumber mosaic virus – CMV) and the pathogenic 
and molecular aspects involved in this kind of three-way cross-talk between the plant, virus and antagonist 
are very little known. Besides the use of T-22 as a biocontrol agent, it has been reported that this fungus can 
also directly improve root growth and plant development in the absence of pathogens. Several mechanisms 
have been proposed for this, such as production of some unidentified growth-regulating compounds by 
the fungus, the increased availability of nutrients for plants and induction of certain root morphological 
changes. All these findings indicate the versatility through which T-22 can directly increase plant tolerance 
against abiotic stresses, such as drought, salinity and soils with low fertility. In spite of their theoretical and 
practical importance, the mechanisms responsible for the growth response due to the direct (growth-
promoting) and indirect (antipathogenic) actions of T-22 in agronomic plants have not been investigated 
extensively. This chapter, based on the most significant and updated studies published in the last years by 
our research group, aims to contribute to a better understanding of the fundamental biochemical and 
physiological aspects of the antipathogenic and plant growth-promoting activities of T-22 on some 
economically important crops. This could promote a rational and non-empirical inclusion of this important 
fungal species into modern agricultural sustainable practices.

*E-mail: adriano.sofo@unibas.it
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and the roots of a plant (Lynch, 1990). In soils, 
numerous microorganisms co-exist in associ-
ation with plant roots, inducing morphological 
and physiological changes in the roots in order 
to promote the adaptability and survival of 
both symbionts (Rigamonte et al., 2010). Some 
microorganisms live specifically in the rhizo-
sphere or on plant root surfaces, and these can 
have many effects on plant performance and 
may also affect plant community structure. The 
plant root surface is surrounded by a specific 
microflora, and the microorganisms distributed 
there have specific roles in the decomposition of 
organic matter. Diverse substances are secreted 
and deleterious microorganisms, which could 
inhibit plant growth, may be suppressed 
(Hyakumachi and Kubota, 2004). Mycorrhizated 
plants are generally able to tolerate pathogens 
and compensate for root damage and photosyn-
thate drain by pathogens because mycorrhiza 
are able to enhance host nutrition and the overall 
plant growth. Arbuscular fungi (e.g. Glomus 
spp.) are known to enhance plant tolerance to 
pathogens but also to abiotic stresses (Hrynk-
iewicz and Baum, 2012), enhancing photosyn-
thetic capacity and delaying senescence.

The microorganisms that populate soils, 
as mycorrhizae, endophytes, saprophytes, but 
also phytopathogens and entomopathogens, 
represent a good resource in transformation 
of organic matter, offering products of enor-
mous potential, such as secondary metabol-
ites, antibiotics and catabolic enzymes (Arora, 
2003). Among them, some species of bacteria 
and fungi are effective also as biocontrol agents 
(BCAs). These fungal antagonists reduce the 
growth of plant pathogens by antibiosis, com-
petition and parasitism (Mathivanan et al., 2008). 
They also induce various defence  responses 
in host plants, such as systemic acquired re-
sistance (SAR) and/or induced systemic re-
sistance (ISR). For this purpose, many scientists 
proposed the use of mycorrhizae associated 
to biocontrol microorganisms as a solution for 
increasing plant tolerance/resistance against 
both biotic and abiotic stresses, for increasing 
plant productivity in degraded soils and for 
reducing agricultural environmental impact. 
The use of microorganisms for biocontrolling 
plant pathogens has been shown to be very 
efficacious for some fungi of the genus Tricho-
derma, Glomus, Streptomyces and some species 

of bacteria (e.g. Bacillus subtilis and Agrobacte-
rium radiobacter). In fact, some of these fungi 
interact with other fungi in a mechanism called 
mycoparasitism, wherein one fungus directly 
kills and obtains nutrients from other fungi. 
Mycoparasitism is one of the most important 
biocontrol mechanisms (Mukherjee, 2011).

Besides the use of Trichoderma as a biocon-
trol agent, this fungus can directly stimulate 
root and shoot growth without the presence 
of pathogens (Sofo et al., 2012). This direct ef-
fect could be due to some growth-regulating 
compounds produced by the fungus, the in-
creased availability of nutrients for plants, and 
some induced change in root morphology. All 
these findings indicate the versatility through 
which Trichoderma can directly increase plant 
tolerance to different kinds of abiotic stresses. 
In the context of plant defence by biotic stress-
es, understanding biochemical and molecular 
mechanisms deriving from the host–pathogen– 
Trichoderma interaction is without doubt essen-
tial for investigating the dynamics of infectious 
processes. This knowledge could be also use-
ful for the development of new strategies for 
controlling phytopathogens, particularly vir-
uses, against which chemical treatments have 
no effect.

Thanks to recent studies, it is now pos-
sible to develop new strategies based on the 
use of peptaibols, a class of linear peptides 
biosynthesized by many species of Trichoder-
ma (Daniel and Filho, 2007). Trichokonins, 
which are antimicrobial peptaibols isolated 
from Trichoderma pseudokoningii SMF2, have 
been reported to induce tobacco systemic re-
sistance against tobacco mosaic virus (TMV) 
through activation of multiple plant defence 
pathways. This is based on an elicitor-like 
cellular response, i.e. enhancement of pro-
duction of superoxide anion radical and per-
oxide in tobacco plants and also enhancement 
of enzymes such as peroxidase (POD), which 
are involved in resistance, up-regulation of 
antioxidative enzyme genes known to be 
 associated with the reactive oxygen species 
(ROS) intermediate-mediated signalling path-
way, and of salicylic acid (SA)-, ethylene 
(ET)- and jasmonic acid (JA)-mediated defence 
path way marker genes (Luo et al., 2010). This 
finding implies the antiviral potential of pep-
taibols, supporting the hypothesis of using 
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them as biocontrol antiviral agents. There-
fore, Trichoderma spp., already used as BCAs 
against bacterial and fungal phytopathogens, 
could be advantageously used also against 
viruses. Considering the theoretical and 
practical importance of the broad range of 
mechanisms responsible for the growth re-
sponse due to the direct (growth-promoting) 
and indirect (antipathogenic) actions of 
Trichoderma, these need to be investigated in 
more detail.

This chapter, based on the most signifi-
cant and updated studies published in the last 
years, aims to contribute to a better under-
standing of the fundamental biochemical and 
physiological aspects of the antipathogenic 
and plant growth-promoting activities of 
Trichoderma on some important economically 
important crops. In particular, the strain T-22 
of T. harzianum is of key importance because 
it is often used as active ingredient in many 
commercial biocontrol products. This could 
promote a rational and non-empirical inclu-
sion of this important fungal species in mod-
ern agricultural sustainable practices.

14.2 The Genus Trichoderma  
harzianum Strain T-22

The filamentous ascomycetous fungi Tricho-
derma spp. are abundant and present in many 
soil types. These fungi are able to infect plant 
roots, invading the first or second layers of 
cells of the root epidermis (Harman et al., 
2004a). Trichoderma spp. show a number of 
different activities between strains (Harman 
et al., 2004b). They are rarely associated with 
diseases of living plants (Gams and Bissett, 
2002). On the contrary, many Trichoderma spe-
cies (e.g. T. harzianum, T. viride) are used as 
BCAs by antagonizing many plant pathogenic 
fungi. Indeed, approximately 60% of all com-
mercial biocontrol formulations are based on 
Trichoderma (Verma et al., 2007).

By working as a deterrent, T-22 protects 
the roots from the assault of pathogenic fungi 
(e.g. Fusarium, Pythium, Rhizoctonia and Sclero-
tinia). Establishing itself in the rhizosphere, 
T-22 can grow on the root system, along which 
it establishes a barrier against pathogens. As 
long as the root system remains active, T-22 

continues to grow, feeding on the root exud-
ates and subtracting the nutrients that the 
pathogens use to feed (Tataranni et al., 2012).

Biocontrol studies have confirmed the ef-
fectiveness of Trichoderma spp. in plant pro-
tection not only against many pathogenic 
fungi (Akrami et al., 2011), but also bacteria 
(Segarra et al., 2009) and viruses (Luo et al., 
2010), probably due to the induction of hyper-
sensitive response (HR), systematic acquired 
resistance (SAR) and induced systematic 
 resistance (ISR) (Kaewchai et al., 2009). How-
ever, the antiviral effects of Trichoderma spp. 
and the associated biochemical and molecu-
lar mechanisms implicated are still scarcely 
known. Plant resistance induced by Tricho-
derma spp. at a molecular level is due to the 
release of specific defence metabolites and 
enzymes, such as: (i) phenyl-alanine ammonia- 
lyase (PAL) and chalcone synthase (CHS), in-
volved in the biosynthesis of phytoalexins 
(HR response); (ii) chitinases and glucanases, 
that include pathogenesis-related proteins (PR) 
and SAR response; and (iii) other enzymes 
involved in the response to oxidative stress 
(Benítez et al., 2004).

It was demonstrated that T-22 improves 
growth in maize plants, increasing root for-
mation (size and area of main and secondary 
roots) and, at the same time, enhancing crop 
yields, tolerance to drought and resistance 
to  compacted soils (Harman, 2000; Harman 
et al., 2004c). This improved plant growth was 
probably due to direct effects on plants be-
cause of a better solubilization of soil nutri-
ents or by a direct enhancing plant uptake of 
nutrients linked to the presence of T-22 in the 
agroecosystem (Yedidia et al., 2001). More re-
cently, it was demonstrated that plant overall 
morphology and metabolism of plant colon-
ized by T-22 caused enhanced root growth 
and suberification (Sofo et al., 2011, 2012) and 
the induction of the synthesis of antimicrobial 
phenolic compounds (Mathivanan et al., 2008). 
The enhanced plant growth due to T-22 was 
confirmed also in terms of total biomass and 
root development, not only in herbaceous 
plants but also in tree species (Sofo et al., 2010). 
Furthermore, the beneficial effects of T-22 ap-
plication depend on the treated plant geno-
type, as recently demonstrated by Tucci et al. 
(2011) on tomato plants.
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Although the capability of Trichoderma 
spp. to alleviate the effects of various abiotic 
stresses on plants is recognized, an under-
standing of the mechanisms that control the 
factors implied in the specific plant stress are 
still missing. Using T-22 in organic manage-
ment systems can surely improve plant physio-
logical status using a holistic approach that 
adopts specific practices for promoting plant 
defence mechanisms, such as tolerance and/or 
resistance to pathogens (Woo et al., 2006).

14.3 Abiotic and Biotic Stresses  
in Plants

Plant growth and productivity are affected 
by various environmental stresses to which 
plants are subjected during their lifespan. 
Due to their sessile conditions, plants cannot 
avoid these stresses and must have strong de-
fences to face them. Indeed, molecular, bio-
chemical, physiological and morphological 
characteristics of plants are markedly affected 
by the exposure to abiotic and biotic stresses. 
The activation of induced defence in plants is 
mediated through the synthesis of molecules 
with signal functions acting as hormones or 
stimulators of plant growth and development 
(Vitti et al., 2013). Among phytohormones, 
a prevailing role in biotic stress signalling is 
played by SA, JA and ET, while abscisic acid 
(ABA) plays a role in the response to some 
abiotic stresses such as drought, low tem-
perature and osmotic stress (Fraire-Velázquez 
et al., 2011).

For example, it is known that SA- 
induced resistance to viruses in tobacco 
and Arabidopsis thaliana is partly mediated 
by a pathway involving signals transduced 
through changes in reactive oxygen species 
(ROS) in the mitochondria (Singh et al., 2004). 
In fact, SA impedes electron flow through 
the respiratory electron transport chain and 
enhances ROS levels in the mitochondria 
(Mayers et al., 2005). Resistance to TMV is 
altered in transgenic tobacco plants with 
altered levels of alternative oxidase (AOX), 
an enzyme that negatively regulates mito-
chondrial ROS levels (Gilliland et al., 2003). 

In A. thaliana, as in tobacco, SA treatments 
inhibited the systemic movement of an-
other virus, cucumber mosaic virus (CMV). 
At the same time, in squash, SA induced re-
sistance to CMV and this was most likely 
due to inhibition of viral cell-to-cell move-
ment. This means that the mechanisms of 
SA-induced resistance may differ mark-
edly between host species (Mayers et al., 
2005). ROS are important second messen-
gers in the responses of plants to various 
other biotic and abiotic stresses (Kwon 
et al., 2007; Wahid et al., 2007; Miller et al., 
2010; Torres, 2010).

Recently, Vitti and co-workers (2013) dem-
on strated that changes in root morphology 
observed in A. thaliana seedlings subjected to 
both biotic (CMV) and abiotic (excess cad-
mium) stressors are probably due to modifi-
cations in hormonal balances. As shown in 
Fig. 14.1, in our experience, evident variations 

Fig. 14.1. Arabidopsis thaliana Columbia ecotype 
control plants (left), inoculated with CMV (centre) 
and treated with cadmium (right) observed 12 days 
after the viral infection or the exposure to cadmium.
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occurred in plant growth, in terms of both shoot 
and root development and also in leaf colour 
(from green of the control plants to brownish 
violet of inoculated and, overall, treated 
plants). Molecular, biochemical, physio logical 
and morphological characteristics of plants 
are markedly affected also by the exposure to 
some heavy metals. Indeed, treatments of plants 
with some metals induce changes in root 
morphology, caused by a hormonal inbal-
ance, mainly governed by the auxin/cytokinin 
ratio (Sofo et al., 2013).

14.4 Benefits of the Use of  
Trichoderma harzianum Strain  

T-22 in Stressed Crops

A broad range of genetic traits and environ-
mental conditions are able to affect the com-
plex phenotype of mycorrhizal fungi, as in 
Trichoderma spp., as well as their ecological 
performance (Buée et al., 2009). The inter-
actions between microbes and plant roots are 
known to have significant effects on plant nu-
trient condition and tolerance to pathogens 
(Altomare et al., 1999). Many studies included 
the use of proteomic (Grinyer et al., 2005) and 
functional genomic analysis in the attempt to 
obtain more information on the changes that 
occur in the Trichoderma spp., plant and patho-
gen expressomes when they interact with 
each other, especially when an increase in dis-
ease resistance is generated (Woo et al., 2006). 
In a recent study, the dynamics of gene ex-
pression in the roots of Arabidopsis colonized 
by Trichoderma were investigated, demon-
strating that this colonization has induced 
deep changes in plant transcripts, through 
plant gene modulation, together with resist-
ance to both biotic and abiotic stresses (Brotman 
et al., 2013).

The mechanism of the interaction Tricho-
derma–plant–pathogen is very complex and 
includes not only the colonization of rhizo-
sphere and phyllosphere and mycoparasitism, 
but also antagonism against nematodes, pro-
duction of extracellular hydrolytic enzymes 
and secondary metabolites that could be toxic 
to plant pathogens, as well as induction of 

systemic resistance against different patho-
gens’ promotion. These Trichoderma–plant inter-
actions can also result in better plant growth 
and root development (Harman et al., 2004c; 
Mathivanan et al., 2008). In particular, T-22 is 
adapted for facing many fungal or bacterial 
pathogens in a broad range of  plant species 
(Sofo et al., 2010; Tataranni et al., 2012). There-
fore, T-22 is considered a very efficacious BCA 
for the control of plant diseases.

14.4.1 Benefits of T-22 against  
abiotic stresses

It has been established recently that the 
change in phytohormone levels, particularly 
auxins and cytokinins, is one of the direct 
mechanisms by which T-22 acts for promotion 
of plant growth in fruit rootstocks (Sofo et al., 
2011). Thus, T-22 seems to promote plant 
growth and development, so acting as a plant 
growth-promoting microorganism, that in 
turn determines a higher tolerance of the 
plants against abiotic stresses (Sofo et al., 
2011). It was also discovered that soil colon-
ization by T-22 enhances plant growth in 
terms of total biomass and root develop-
ment by about 20% and 30%, respectively (Sofo 
et al., 2010).

The cross-talk between the different 
plant hormones, whose levels change after 
plant inoculation with T-22, results in syner-
getic or antagonistic interactions that play 
crucial roles in the response of plants to abi-
otic stresses, such as drought, salinity and 
toxic metals (Baroni et al., 2004; Peleg and 
Blumwald, 2011). An example of this is de-
picted in Fig. 14.2, where cherry seedlings in-
oculated with T-22 and subjected to water 
deficit appear to be more developed than 
control un-inoculated plants. Thus, it is pos-
sible that plant hormones play central roles 
in the ability of plants to adapt to changing 
environments by mediating growth, devel-
opment, nutrient allocation and source/sink 
transitions.

In a study by Mastouri et al. (2010) it was 
shown that under either biotic stress caused by 
Pythium ultimum or different abiotic stresses 
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such as drought, salinity, elevated or low tem-
perature, treatment of tomato seeds with T-22 
led to more rapid and uniform germination in 
comparison to no treatment.

More recently, the same authors dem-
onstrated that the application of T-22 to to-
mato seedlings enhanced the tolerance to 
water deficit by improving the antioxidant 
defence mechanism (e.g. higher activity 
of  ascorbate and glutathione-recycling en-
zymes) (Mastouri et al., 2012). It is proposed 
that in addition to the hormonal factors, 
T-22 allows plants to tolerate abiotic stresses 
more efficiently by increased root suberifi-
cation and hardening, as well as acidifica-
tion of the soil, which would favour the 
diffusion of cations from the soil to the root 
against the concentration gradient and an 
increased availability of some inorganic 
compounds indispensable for plants (Sofo 
et al., 2012).

14.4.2 Benefits of T-22 against  
biotic stresses

Biocontrol by T-22 is related to its ability to 
compete with soil pathogens rather than to its 
control of plant diseases. Therefore, T-22 does 
not act by producing compounds that are 
toxic to the pathogens, but rather by indu-
cing change in the physiology and metabol-
ism of the plants leading to development of 
resistance to the disease (Harman et al., 2008). 
For that reason, various mechanisms are in-
volved, foremost mycoparasitism and anti-
biosis (Howell, 2003; Vitale et al., 2012). In the 
case of mycoparasitism, recognition, binding 
and enzymatic disruption of the target cell 
wall take place (Woo and Lorito, 2007). On 
the other hand, inhibition or destruction of 
the microorganism target by metabolites or 
by the production of antibiotics able to inhibit 
their growth (antibiosis) were also observed. 

Fig. 14.2. Cherry seedlings (Prunus cerasus x P. canescens) inoculated with T-22, grown in sterile perlite 
and subjected to drought stress (right) and control un-inoculated plants subjected to the same degree of 
drought (left).
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In such case, antibiotics can stop spore ger-
mination (action known as fungistasis) or alter-
natively destroy the cells (veritable antibiosis) 
(Benítez et al., 2004).

The range of pathogens controlled by T-22 
is broad and includes fungi, bacteria and viruses 
(Harman et al., 2004a). Among plant-pathogenic 
fungi, the following are the most represented: 
Botrytis cinerea, Fusarium, Pythium and Rhizoc-
tonia (Kaewchai et al., 2009). The efficacy of Trich-
oderma spp. action is obviously related to the 
specific interaction between plant–pathogen–
antagonist. For example, Vitale and co-authors 
(2012) demonstrated that T-22 was able to act 
as a BCA of collar and root rot caused by differ-
ent Calonectria pauciramosa isolates on red clo-
ver (Triflolium pratense) and, specifically, that 
the degree of virulence and T-22 effects in 
controlling infections were highly variable 
among the isolates tested. In our experience, 
preliminary results of current studies con-
ducted in our laboratories seem to indicate a 
potential antiviral activity of T-22 against the 
infection of CMV, strain Fny, on tobacco plants, 
as shown in Fig. 14.3, where the plant treated 
with the fungus does not show the symptoms 
induced by the virus.

14.5 Conclusion

In T-22-inoculated plants subjected to different 
types of adverse environmental conditions, 
comparative proteomics experiments should 
be carried out to identify specific proteins 

involved in plant resistance against specific 
stresses. For this kind of analysis, 2D-electro-
phoretic cells, protein fractionation and iso- 
electrofocusing techniques and MALDI-TOF 
MS are commonly used. Accurate microscopic 
analyses should be carried out through elec-
tron (SEM and ESEM), epifluorescence and 
light microscopes in order to ascertain T-22 
persistence and evaluate their colonization. 
Finally, comparative proteomics experiments 
could be of primary importance to identify 
specific proteins involved in the common 
response of T-22-inoculated plants to face abi-
otic stresses.

Plant stresses contribute significantly to 
crop damage and yield loss. In agriculture, 
annual crop losses by phytopathogenic micro-
organisms in the field and also during post-
harvest exceed €500 billion (Tataranni et al., 
2012). The balance of beneficial and detrimental 
effects is reflected in many other areas of agri-
culture and horticulture. In such a scenario, in 
modern agro-industry, fungi such as T. harzianum 
strain T-22 offer many established beneficial 
roles, particularly as biofertilizers, mycorrhizae, 
and BCAs of pathogens, pests and weeds. In 
addition to their biocontrol characteristics, 
T-22 also exhibits plant growth- promoting 
activity, acting as powerful  biostimulants. 
The utilization of T-22 or other microorgan-
isms as biostimulants can cause a reduction in 
the use of fertilizers and fungicides in agricul-
tural production, with consequent benefits 
for the environment. This is necessary to help 
maintain ecosystems and to develop sustain-
able agriculture.

Infected / Untreated

(a) (b)

Infected / Treated

Fig. 14.3. (a) Nicotiana tabacum cv. Xanthi infected with CMV (left); (b) the same plant infected with CMV 
and also treated with Trichoderma harzianum T-22 (right).
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