SPECTROSCOPIC TABLES

The following pages contain some basic spectroscopic data tables.

(1) Schematic diagrams of NMR chemical shift data for H

Both the schematic figure and the table show similar information presented in different ways. Both have their merits. They show the typical chemical shifts for protons being influenced by a *single group*. In cases where a proton is influenced by *more than one group*, the effects are essentially cumulative, for example proton shift in CH_3CI is at approximately 3.1ppm while $CH_2CI_2 = 5.3ppm$.

(2) Schematic diagrams of NMR chemical shift data for ¹³C

Like the proton NMR diagrams, the figure and the table show similar information presented in different ways and both have their merits. They show the typical chemical shifts for carbon atoms being influenced by a *single group*. The effects of multiple groups is a little more complex and is therefore less predictable than seen in H-NMR, but often the effects are cumulative.

(3) Infra Red absorption frequencies

Typical ranges of absorption frequencies are provided. In individual cases, the specific frequency observed is affected by a variety of factors including the particular structure of the sample molecule and the nature of the sample preparation (e.g. nujol mull vs thin film vs solid disc).

¹H NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

R =	= methyl	methylene	methyne		
	$-CH_3$	-CH ₂ -	–ĊH	other	•
R-C	0.9	1.4	1.5	sp ³ C -OH	1-5
R /				sp ³ C -NH	1-3
) C=C	1.6	2.3	2.6	С⊒СН	2.5
R R	2.1	2.4	2.5	C=C_H	4.5-6.5
R-N	2.2	2.5	2.9	H	6.5-8
R	2.3	2.7	3.0	О " "С`н	9-10
R–Br	2.7	3.3	4.1	ů ů	
R–CI	3.1	3.4	4.1	^с с	9-12
R-0—	3.3	3.4	3.7		

¹³C NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

APPENDICES

INFRA-RED GROUP ABSORPTION FREQUENCIES

		TYPE OF VIBRATION	FREQUENCY (cm ⁻¹)	<u>WAVELENGTΗ</u> (μ)	INTENSITY (1)	
C–H	Alkanes	(stretch)	3000-2850	3.33-3.51	S	
	–CH ₃	(bend)	1450 and 1375	6.90 and 7.27	m	
	CH2	(bend)	1465	6.83	m	
	Alkenes	(stretch)	3100-3000	3.23-3.33	m	
		(bend)	1700-1000	5.88-10.0	S	
	Aromatics	(stretch)	3150-3050	3.17-3.28	S	
		(out-of-plane bend)	1000-700	10.0-14.3	S	
	Alkyne	(stretch)	ca. 3300	ca.3.03	S	
	Aldehyde		2900-2800	3.45-3.57	w	
			2800-2700	3.57-3.70	w	
C–C	Alkane	not usually useful				
C=C Alkene			1680-1600	5.95-6.25	m-w	
	Aromatic		1600-1400	6.25-7.14	m-w	
C≡C	Alkyne		2250-2100	4.44-4.76	m-w	
C=O	O Aldehyde		1740-1720	5.75-5.81	S	
	Ketone		1725-1705	5.80-5.87	S	
	Carboxylic a	cid	1725-1700	5.80-5.88	S	
	Ester		1750-1730	5.71-5.78	S	
	Amide		1700-1640	5.88-6.10	S	
	Anhydride		ca. 1810	ca. 5.52	S	
			ca. 1760	ca. 5.68	S	
	Acyl chloride	9	1800	5.55	S	
C–O	O Alcohols, Ethers, Esters,					
	Carboxylic acids		1300-1000	7.69-10.0	S	
O–H	Alcohols, Phenols					
	Free		3650-3600	2.74-2.78	m	
	H-Bond	led	3400-3200	2.94-3.12	m	
	Carboxylic acids (2)		3300-2500	3.03-4.00	m	
N–H	Primary and secondary amines		ca. 3500	ca. 2.86	m	
C≡N	Nitriles		2260-2240	4.42-4.46	m	
N=O	N=O Nitro (R–NO ₂)		1600-1500	6.25-6.67	S	
			1400-1300	7.14-7.69	S	
C–X	C-X Fluoride		1400-1000	7.14-10.0	S	
	Chloride		800-600	12.5-16.7	S	
	Bromide, loc	lide	<600	>16.7	S	

(1) s = strong, m = medium and w = weak

(2) note that the -OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad