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Some thermodynamic properties can be measured directly, but many others cannot. 

Therefore, it is necessary to develop some relations between these two groups so 

that the properties that cannot be measured directly can be evaluated. The 

derivations are based on the fact that properties are point functions, and the state of 

a simple, compressible system is completely specified by any two independent, 

intensive properties.  

 

Some Mathematical Preliminaries 

 

Thermodynamic properties are continuous point functions and have exact 

differentials.   A property of a single component system may be written as general 

mathematical function z = z(x,y).  For instance, this function may be the pressure P = 

P(T,v).  The total differential of z is written as  
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where 

Taking the partial derivative of M with respect to y and of N with respect to x yields 

Since properties are continuous point functions and have exact differentials, the 

following is true  

The equations that relate the partial derivatives of properties P, v, T, and s of a simple 

compressible substance to each other are called the Maxwell relations. They are 

obtained from the four Gibbs equations.  The first two of the Gibbs equations are 

those resulting from the internal energy u and the enthalpy h. 

du T ds Pdv

dh T ds vdP
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The second two Gibbs equations result from the definitions of the Helmholtz  function 

a  and the Gibbs function g defined as 

a u Ts

da du T ds sdT

da sdT Pdv

g h Ts

dg dh T ds sdT

dg sdT v dP

 

  

  

 

  

  

Setting the second mixed partial derivatives equal for these four functions yields the 

Maxwell relations  
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Now we develop two more important relations for partial derivatives—the reciprocity 

and the cyclic relations.  Consider the function z = z(x,y) expressed as x = x(y,z).  

The total differential of x is  

Now combine the expressions for dx and dz. 

Rearranging, 
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Since y and z are independent of each other, the terms in each bracket must be zero.  

Thus, we obtain the reciprocity relation that shows that the inverse of a partial 

derivative is equal to its reciprocal. 

or 

The second relation is called the cyclic relation. 
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Another way to write this last result is 

The Clapeyron Equation 

 

The Clapeyron equation enables us to determine the enthalpy change associated 

with a phase change, hfg, from knowledge of P, v, and T data alone.  



8 

Consider the third Maxwell relation 

During phase change, the pressure is the saturation pressure, which depends on the 

temperature only and is independent of the specific volume.  That is Psat = f(Tsat).  

Therefore, the partial derivative           can be expressed as a total derivative 

(dP/dT)sat, which is the slope of the saturation curve on a P-T diagram at a specified 

state.  This slope is independent of the specific volume, and thus it can be treated as 

a constant during the integration of the third Maxwell relation between two saturation 

states at the same temperature.  For an isothermal liquid-vapor phase-change 

process, the integration yields  
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During the phase-change process, the pressure also remains constant.  Therefore, 

from the enthalpy relation 

Now we obtain the Clapeyron equation expressed as  
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Example 12-1 

 

Using only P-v-T data, estimate the enthalpy of vaporization of water at 45oC. 

 

The enthalpy of vaporization is given by the Clapeyron equation as  

Using the P-v-T data for water from Table A-4 
3
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The actual value of hfg is 2394.0 kJ/kg.  The Clapeyron equation approximation is low 

by about 1 percent due to the approximation of the slope of the saturation curve at 

45oC. 

 

Clapeyron-Clausius Equation 

 

For liquid-vapor and solid-vapor phase-change processes at low pressures, an 

approximation to the Clapeyron equation can be obtained by treating the vapor phase 

as an ideal gas and neglecting the specific volume of the saturated liquid or solid 

phase compared to that of the vapor phase.  At low pressures 
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For small temperature intervals, hfg can be treated as a constant at some average 

value.  Then integrating this equation between two saturation states yields 
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General Relations for du, dh, ds, Cv, and Cp 

 

The changes in internal energy, enthalpy, and entropy of a simple, compressible 

substance can be expressed in terms of pressure, specific volume, temperature, and 

specific heats alone.  

 

Consider internal energy expressed as a function of T and v. 

Recall the definition of the specific heat at constant volume  

Then du becomes  
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Now let’s see if we can evaluate             in terms of P-v-T data only.  Consider the 

entropy as a function of T and v; that is,  

Now substitute ds into the T ds relation for u. 

Comparing these two results for du, we see 
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Using the third Maxwell’s relation 

T v

T v

s P
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u P
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Notice that the derivative               is a function of P-v-T only.  Thus the total 

differential for u = u(T,v) is written as  

  
Example 12-2 

 

Do you remember that we agreed that the internal energy of an ideal gas depended 

only on temperature?  Let’s evaluate the following partial derivative for an ideal gas. 
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For ideal gases 

This result helps to show that the internal energy of an ideal gas does not depend 

upon specific volume.  To completely show that internal energy of an ideal gas is 

independent of specific volume, we need to show that the specific heats of ideal 

gases are functions of temperature only.  We will do this later. 

 

We could also find the following relations for dh and ds where h = h(T,P)  and s = 

s(T,v) or s = s(T,P)  
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Example 12-3 

 

Determine an expression for the entropy change of an ideal gas when temperature 

and pressure data are known and the specific heats are constant. 

For an ideal gas 

For constant specific heat this becomes 
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Extra Assignment 

 

Determine the expression for dh when h = h(T,v). 

 

Specific Heats 

 

For specific heats, we have the following general relations: 

Let Cp0 be the ideal-gas, low-pressure value of the specific heat at constant pressure.  

Integrating the above relation for Cp along an isothermal (T = constant) path yields 

Given the equation of state, we can evaluate the right-hand side and determine the 

actual specific heat as Cp = Cp(T,P). 
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Other relations for the specific heats are given below. 

where  is the volume expansivity and  is the isothermal compressibility, defined as 

Example 12-4 

 

Determine Cp – Cv for ideal gases. 
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The difference Cp – Cv  is equal to R for ideal gases and to zero for incompressible 

substances (v = constant). 

Example 12-5 

 

Show that Cv of an ideal gas does not depend upon specific volume. 
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Therefore, the specific heat at constant volume of an ideal gas is independent of 

specific volume.  

For an ideal gas 
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The Joule-Thomson Coefficient 

 

The temperature behavior of a fluid during a throttling (h = constant) process is 

described by the Joule-Thomson coefficient, defined as 

The Joule-Thomson coefficient is a measure of the change in temperature of a 

substance with pressure during a constant-enthalpy process, and it can also be 

expressed as 
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Example For You To Do 

 

Take a moment to determine the Joule-Thomson coefficient for an ideal gas.  What is 

the enthalpy change of an ideal gas during an isothermal process? 

Enthalpy, Internal Energy, and Entropy Changes for Real Gases 

 

The enthalpy, internal energy, and entropy changes of real gases can be determined 

accurately by utilizing generalized enthalpy or entropy departure charts to account for 

the deviation from the ideal-gas behavior.  Considering the enthalpy a function of T 

and P, h = h(T,P), we found dh to be  

To integrate this relation to obtain the expression for the enthalpy change of a real 

gas, we need the equation of state data, the P-v-T relation, and Cp data.  Here we 

use the generalized compressibility charts and the compressibility factor, Figure A-

15a, to supply the equation of state data.  Let’s integrate the dh equation between 

two states from T1, P1 to T2, P2.  
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Since enthalpy is a property and is thus a point function, we can perform the 

integration over any convenient path.  Let’s use the path shown below. 

The path is composed of an isothermal process at T1 from P1 to P0 (P0 is low enough 

pressure that the gas is an ideal gas or can be taken to be zero), a constant pressure 

process at P0 from T1 to T2, and finally an isothermal process at T2 from P0 to P2.  

Using the superscript asterisk (*) to denote the ideal-gas state, the enthalpy change 

for the real gas is expressed as 

h h h h h h h h2 1 2 2 2 1 1 1         ( ) ( ) ( )
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For process 2* to 2, T2 = constant. 

For process 1* to 2*, P0 = constant (Cp0 is the specific heat at the ideal gas state). 

For process 1 to 1*, T1 = constant.  
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The enthalpy difference (h* - h) is called the enthalpy departure and represents the 

variation of the enthalpy of a gas with pressure at a fixed temperature.  When we 

don’t have the actual P-v-T data for the gas, we can use the compressibility factor to 

relate P, v, and T by 

Pv ZRT

where Z is a function of T and P through the reduced temperature, Tr = T/Tcr, and the 

reduced pressure, Pr = P/Pcr. 
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Noting that 

 ln
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we write the enthalpy departure in terms of the enthalpy departure factor Zh, as  
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Zh is given as a function of PR and TR in Figure A-29, called the enthalpy departure 

chart.  In Figure A-29 h* has been replaced by hideal.  The enthalpy change between 

two states 1 and 2 is  
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Example 12-6 

 

Propane gas flows steadily through a pipe.  The inlet state is 407 K, 5.21 MPa, and 

the exit state is 370 K, 4.26 MPa. Determine the heat loss from the propane to the 

surroundings per unit mass of propane. 

Conservation of mass 

  m m m1 2 
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Conservation of energy 
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Now, we approximate the enthalpy difference by using the above real gas analysis and 

determine the heat transfer per unit mass as 

Use Tables A-1 and A-2 to obtain properties of propane.   From Table A-1, Tcr = 370 

K, Pcr = 4.26 MPa.  From Table A-2, Cp0 = 1.6794 kJ/kgK. 

T
T

T

K

K
P

P

P

MPa

MPa

T
T

T

K

K
P

P

P

MPa

MPa

R

cr

R

cr

R

cr

R

cr

1
1

1
1

2
2

2
2

407

370
11

521

4 26
12

370

370
10

4 26

4 26
10

     

     

. ,
.

.
.

. ,
.

.
.



30 

Figure A-29 yields  

Z Zh h1 2145 2 5 . , .

If we assumed propane to be an ideal gas 



31 

The error in assuming propane is ideal is 
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100%
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135 37
100%

54 1%

The internal energy change of a real gas is given as (u = h – Pv) 

The entropy change for a real gas at constant temperature is determined as follows. 

  

Let’s assume entropy is expressed in terms of T and P as s = s(T,P).  Then 
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Now let’s consider a constant temperature process and determine the entropy 

change at constant temperature from zero pressure, where the gas is assumed to be 

ideal, to a given pressure where the gas is assumed to be real. 

The direct substitution of the compressibility factor into this equation would do us no 

good since the entropy of an ideal-gas state of zero pressure is infinite in value.  We 

get around this by finding the entropy change in an isothermal process from zero 

pressure to the same given pressure P, assuming that the gas behaves as an ideal 

gas at all times. 
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Now form the so-called entropy departure from the difference 

Using v =ZRT/P the last result may be written as 

Substituting T = TcrTR and P = PcrPR and rearranging as we did for the enthalpy 

departure term, we express the entropy departure in non-dimensional form as 
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Zs is called the entropy departure factor and is found in Table A-30, called the entropy 

departure chart.  In Table A-30 s* is replaced by sideal.  The entropy change during a 

process 1-2 is given as 

Note: The concept for finding the entropy change using the entropy departure charts 

is different than that used to find the enthalpy change.  The entropy change between 

two states is the ideal-gas change between the two states plus two correction factors, 

one at each state—the entropy departures, to account for nonideal gas behavior at 

each state. 
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Example 12-7 

 

Carbon dioxide gas is compressed reversibly and adiabatically from 0.1 MPa and 220 

K to 4.0 MPa.   Find the final temperature for the process. 

 

Since the process is reversible and adiabatic, the process is also isentropic; 

therefore,  

s s s  2 1 0

or using the real gas results for entropy change 

Use Tables A-1 and A-20 to obtain properties of carbon dioxide.   From Table A-1,  

Tcr = 304.2 K, Pcr = 7.39 MPa.  

T
T

T

K

K
P

P

P

MPa

MPa

T
T

T

T

K
P

P

P

MPa

MPa

R

cr

R

cr

R

cr

R

cr

1
1

1
1

2
2 2

2
2

220

304 2
0 724

01

7 39
0 0135

304 2

4

7 39
0541

     

     

.
. ,

.

.
.

.
?,

.
.



36 

Figure A-15a yields (state 1 is an ideal gas state) 

Z Zs s1 20 , ?
Table A-20 yields 

Assuming ideal-gas behavior with constant specific heats for an isentropic process 
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T
T
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Guess T2 = 500 K 

 

Figure A-15a yields (state 1 is an ideal-gas state) 

Table A-20 yields 
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Guess T2 = 490 K. 

 

Figure A-15a yields  
T
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Table A-20 yields 

Therefore, 490 < T2 < 500 K. For s = 0, by interpolation T2  498 K. 


