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The first law of thermodynamics is an expression of the conservation of energy 

principle.  Energy can cross the boundaries of a closed system in the form of 

heat or work.   

 

Heat is energy transfer across a system boundary due solely to the temperature 

difference between a system and its surroundings.  

 

Work energy can be thought of as the energy expended to lift a weight.  

Chapter 4 

For more information and animations illustrating this topic visit the 

Animation Library developed by Professor S. Bhattacharjee, San 

Diego State University, at this link.   

 

test.sdsu.edu/testhome/vtAnimations/index.html 
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For the closed system shown above, the conservation of energy principle or the 

first law of thermodynamics is expressed as  

Closed System First Law 

 

A closed system moving relative to a reference plane is shown below where z is the 

elevation of the center of mass above the reference plane and     is the velocity of the 

center of mass. 


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z 

Heat 
Work 

Reference Plane, z = 0 
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or  

E E Ein out system  

According to classical thermodynamics, we consider the energy added to be net heat 

transfer to the closed system and the energy leaving the closed system to be net 

work done by the closed system.  So  

Q W Enet net system  
Where 

2

1

( )

net in out

net out in other b

b

Q Q Q

W W W W

W PdV

 

  

 

Normally the stored energy, or total energy, of a system is expressed as the sum of 

three separate energies.  The total energy of the system, Esystem, is given as  
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E Internal energy Kinetic energy Potential energy

E U KE PE

=   +    +   

=   +   +  

Recall that U is the sum of the energy contained within the molecules of the system 

other than the kinetic and potential energies of the system as a whole and is called 

the internal energy.  The internal energy U is dependent on the state of the system 

and the mass of the system. 

 

For a system moving relative to a reference plane, the kinetic energy KE and the 

potential energy PE are given by  

2

0

0

2

V

V

z

z

mV
KE mV dV

PE mg dz mgz





 

 





The change in stored energy for the system is  

   E U KE PE  

Now the conservation of energy principle, or the first law of thermodynamics for 

closed systems, is written as 

Q W U KE PEnet net     
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If the system does not move with a velocity and has no change in elevation, the 

conservation of energy equation reduces to 

Q W Unet net  

We will find that this is the most commonly used form of the first law. 

 

Closed System First Law for a Cycle 

 

Since a thermodynamic cycle is composed of processes that cause the working fluid 

to undergo a series of state changes through a series of processes such that the final 

and initial states are identical, the change in internal energy of the working fluid is 

zero for whole numbers of cycles.  The first law for a closed system operating in a 

thermodynamic cycle becomes  

Q W U

Q W

net net cycle

net net

 




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Example 4-1 

 

Complete the table given below for a closed system under going a cycle.  

Process   Qnet kJ  Wnet kJ   U2 – U1 kJ  

1-2   +5        -5  

2-3   +20  +10    

3-1   -5 

Cycle  
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(Answer to above problem) Row 1: +10, Row 2: +10, Row 3: -10, -5 

Row 4: +15, +15, 0  

In the next section we will look at boundary work in detail.   

 

Review the text material on other types of work such as shaft work, spring work, 

electrical work. 

Chapter 4 
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Closed system boundary work 

 

The piston-cylinders of the internal combustion engine shown below may 

be considered to operate as a closed system when the intake and exhaust 

valves are closed. 

 

This internal 

combustion engine 

is an eight piston-

cylinder device. 
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Boundary Work 

 

Work is energy expended when a force acts through a displacement.  

Boundary work occurs because the mass of the substance contained within 

the system boundary causes a force, the pressure times the surface area, to 

act on the boundary surface and make it move.  This is what happens when 

products of combustion, the “gas” in the figure below, of an internal 

combustion engine contained in a piston-cylinder device expands against the 

piston and forces the piston to move; thus, boundary work is done by the gas 

on the piston.  Note the “gas” could also be a real fluid such as steam of 

refrigerant-134a.   
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Since the work is process dependent, the differential of boundary work Wb  

W PdVb 

is called inexact.  The above equation for Wb is valid for a quasi-equilibrium process 

and gives the maximum work done during expansion and the minimum work input 

during compression.  In an expansion process the boundary work must overcome 

friction, push the atmospheric air out of the way, and rotate a crankshaft. 

b friction atm crank

2

friction atm crank
1

( )

W W W W

F P A F ds

  

  

Boundary work is then calculated from 

Chapter 4 



12 

P f V ( )
So as we work problems, we will be asking, “What is the pressure-volume 

relationship for the process?”  Remember that this relation is really the force-

displacement function for the process. 

 

The boundary work is equal to the area under the process curve plotted on the 

pressure-volume diagram.  

To calculate the boundary work, the process by which the system changed states 

must be known.    Once the process is determined, the pressure-volume relationship 

for the process can be obtained and the integral in the boundary work equation can 

be performed.  For each process we need to determine 

Chapter 4 
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Note from the above figure: 

P is the absolute pressure and is always positive. 

When dV is positive, Wb is positive. 

When dV is negative, Wb is negative. 

Since the areas under different process curves on a P-V diagram are different, the 

boundary work for each process will be different.  The next figure shows that each 

process gives a different value for the boundary work.  

Chapter 4 
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An example of negative classical thermodynamics boundary work 

is the work required to drive a compressor.  The figure below 

shows a 7.5 horse power, two stage (two pistons) compressor with 

intercooling attached to an eighty gallon reservoir (see Chapter 7 

for a discussion of this device). 

The calculated 

boundary work 

Wnet to 

compress the 

gas will be 

negative  

because the 

pistons do work 

on the air. 

 

Of course, the 

actual work 

supplied by the 

motor Win is 

negative of the 

calculated work. 
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Some Typical Processes 

 

Constant volume process 

 

If the volume is held constant, dV = 0, and the boundary work equation becomes  

If the working fluid is an ideal gas, what will happen to the temperature of the gas 

during this constant volume process?  

P-V diagram for V = constant 

P 1 

2 

V 
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Constant pressure process  

P 

V 

2 1 

P-V DIAGRAM for P = CONSTANT 

If the pressure is held constant, the boundary work equation becomes  

For the constant pressure process shown above, is the boundary work positive or 

negative and why? 

Chapter 4 



17 

Constant temperature process, ideal gas 

 

If the temperature of an ideal gas system is held constant, then the equation of 

state provides the pressure-volume relation  

P
mRT

V


Then, the boundary work is  

Note: The above equation is the result of applying the ideal gas assumption for 

the equation of state.  For real gases undergoing an isothermal (constant 

temperature) process, the integral in the boundary work equation would be done 

numerically. 

Chapter 4 
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The polytropic process 

 

The polytropic process is one in which the pressure-volume relation is given 

as  

PV n  constant
The exponent n may have any value from minus infinity to plus infinity 

depending on the process.  Some of the more common values are given below.  

Process   Exponent n 

Constant pressure   0 

Constant volume   

Isothermal & ideal gas  1  

Adiabatic & ideal gas  k = CP/CV 

Here, k is the ratio of the specific heat at constant pressure CP to specific 

heat at constant volume CV.  The specific heats will be discussed later. 
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The boundary work done during the polytropic process is found by substituting 

the pressure-volume relation into the boundary work equation.  The result is  

Note: for the polytropic process the constant, Const = P1V1 = P2V2 

 

Notice that the result we obtained for an ideal gas undergoing a 

polytropic process when n = 1 is identical to that for an ideal gas 

undergoing the isothermal process.  
 

Chapter 4 



20 

 Example 4-2 

 

Three kilograms of nitrogen gas at 27C and 0.15 MPa are compressed isothermally 

to 0.3 MPa in a piston-cylinder device.  Determine the minimum work of compression, 

in kJ. 

 

System:  Nitrogen contained in a colsed, piston-cylinder device. 

 

Process: Constant temperature  

Wb Nitrogen 

gas 

System Boundary 

P-V DIAGRAM for T = CONSTANT 

P 

V 

2 

1 
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Property Relation:  Check the reduced temperature and pressure for 

nitrogen.  The critical state properties are found in Table A-1. 

T
T

T

K

K
T

P
P

P

MPa

MPa

P P

R

cr

R

R

cr

R R

1
1

2

1
1

2 1

27 273

126 2
2 38

015

339
0 044

2 0 088

 


 

  

 

( )

.
.

.

.
.

.

Since PR<<1 and T>2Tcr, nitrogen is an ideal gas, and we use the ideal gas equation 

of state as the property relation. 

PV mRT
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Work Calculation:  

For an ideal gas in a closed system (mass = constant), we have 

m m

PV

RT

PV

RT

1 2

1 1

1

2 2

2





Since the R's cancel, we obtain the combined ideal gas equation.  Since T2 = T1, 

V

V

P

P

2

1

1

2


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The net work is  

W W kJnet b, , .12 120 184 5   

On a per unit mass basis 

w
W

m

kJ

kg
net

net

,

,
.12

12
615  

The net work is negative because work is done on the system during the 

compression process.  Thus, the work done on the system is 184.5 kJ, or 184.5 kJ of 

work energy is required to compress the nitrogen. 

Chapter 4 
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Example 4-3 

 

Water is placed in a piston-cylinder device at 20 C, 0.1 MPa.  Weights are placed on 

the piston to maintain a constant force on the water as it is heated to 400 C.  How 

much work does the water do on the piston? 

System:  The water contained in the piston-cylinder device 

Heat 

System  

Boundary 

for  water 

Wb 

Property Relation: Steam tables 

 

Process:  Constant pressure  

Chapter 4 



25 

10
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3
/kg]

P
 [

k
P

a
]

 400 C 

 20 C 

Steam

1 2

 

Work Calculation: 

 

Since there is no Wother  mentioned in the problem, the net work is  

Since the mass of the water is unknown, we calculate the work per unit mass. 
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At T1 = 20C, Psat = 2.339 kPa.  Since P1 > 2.339 kPa, state 1 is compressed liquid.  

Thus, 

v1  vf  at 20 C = 0.001002 m3/ kg 

At P2 = P1 = 0.1 MPa, T2 > Tsat at 0.1 MPa = 99.61C.  

So, state 2 is superheated.  Using the superheated tables at 0.1 MPa, 400C 

v2 = 3.1027 m3/kg  ,12 2 1

3 3

3

10
0.1 (3.1027 0.001002)

310.2

bw P v v

m kPa kJ
MPa

kg MPa m kPa

kJ

kg

 

 



The water does work on the piston in the amount of 310.2 kJ/kg. 
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Example 4-4 

 

One kilogram of water is contained in a piston-cylinder device at 100 C.  The piston 

rests on lower stops such that the volume occupied by the water is 0.835 m3.  The 

cylinder is fitted with an upper set of stops.  When the piston rests against the upper 

stops, the volume enclosed by the piston-cylinder device is 0.841 m3.  A pressure of 

200 kPa is required to support the piston.  Heat is added to the water until the water 

exists as a saturated vapor.  How much work does the water do on the piston? 

 

System:  The water contained in the piston-cylinder device 

P 

v 

W

b 

System  

Boundary 

Stops 

Stops 

Water 

Wb 
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Property Relation: Steam tables  

Process:  Combination of constant volume and constant pressure processes to be 

shown on the P-v diagram with respect to the saturation lines as the problem is 

solved. 

 

Work Calculation: 

 

The specific volume at state 1 is  
v

V

m
1

1 = =
0.835 m

1kg
= 0.835

m

kg
 

3 3

At T1 = 100C, 
3 3

=0.001044  =1.6720f g

m m
v v

kg kg

Therefore, vf < v1 < vg and state 1 is in the saturation region; so  

P1 = 101.35 kPa.  Show this state on the P-v diagram. 

 

Now let’s consider the processes for the water to reach the final state. 

Process 1-2: The volume stays constant until the pressure increases to 200 

kPa.  Then the piston will move. 
Chapter 4 
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v v
m

kg
2 1

3

0835  .

Process 2-3: Piston lifts off the bottom stops while the pressure stays constant. Does 

the piston hit the upper stops before or after reaching the saturated vapor state? 

Let's set  v
V

m

m

kg

m

kg
3

3

3 30841

1
0841 = =

.
= .  

At P3 = P2 = 200 kPa 
3 3

=0.001061  =0.88578f g

m m
v v

kg kg

Thus, vf < v3 < vg.  So, the piston hits the upper stops before the water reaches the 

saturated vapor state. Now we have to consider a third process. 

Process 3-4: With the piston against the upper stops, the volume remains constant 

during the final heating to the saturated vapor state and the pressure increases. 

Because the volume is constant in process 3-to-4, v4  = v3  = 0.841 m3/kg and v4 

is a saturated vapor state. Interpolating in either the saturation pressure table or 

saturation temperature table at v4 = vg gives 
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30 

The net work for the heating process is (the “other” work is zero)  

Later in Chapter 4, we will apply the conservation of energy, or the first law of 

thermodynamics, to this process to determine the amount of heat transfer 

required. 

Chapter 4 
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Example 4-5 

 

Air undergoes a constant pressure cooling process in which the temperature 

decreases by 100C.  What is the magnitude and direction of the work for 

this process? 

System:  

Air 

Wb 

System  

Boundary 

P 

V 

2 
1 

Chapter 4 



Property Relation:  Ideal gas law, Pv = RT 

 

 

Process: Constant pressure 

 

 

Work Calculation: Neglecting the “other” work 

The work per unit mass is 

,12

,12 2 1( )

(0.287 )( 100 ) 28.7

net

net

W
w R T T

m

kJ kJ
K

kg K kg

  

   


The work done on the air is 28.7 kJ/kg. 

 32 Chapter 4 
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Example 4-6 

 

Find the required heat transfer to the water in Example 4-4.  

 

Review the solution procedure of Example 4-4 and then apply the first law to the 

process. 

 

Conservation of Energy:  

,14 ,14 14

in out

net net

E E E

Q W U

  

  

In Example 4-4 we found that      W kJnet , .14 12

The heat transfer is obtained from the first law as 

,14 ,14 14net netQ W U 

where  U U U m u u14 4 1 4 1   ( )
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At state 1, T1 = 100C, v1  = 0.835  m3/kg and vf < v1 < vg at T1.  The quality 

at state 1 is  

1 1

1

1

0.835 0.001043
0.499

1.6720 0.001043

f fg

f

fg

v v x v

v v
x

v

 

 
  



1 1

419.06 (0.499)(2087.0)

1460.5

f fgu u x u

kJ

kg

 

 


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Because state 4 is a saturated vapor state and v4 = 0.841 m3/kg, 

interpolating in either the saturation pressure table or saturation temperature 

table at v4 = vg gives  

u
kJ

kg
4 253148 .

14 4 1( )

(1 )(2531.48 1460.5)

1071.0

U m u u

kJ
kg

kg

kJ

  

 



Now 

The heat transfer is  ,14 ,14 14

1.2 1071.0

1072.2

net netQ W U

kJ kJ

kJ

 

 



Heat in the amount of 1072.42 kJ is added to the water. 
Chapter 4 
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Specific Heats and Changes in Internal Energy and Enthalpy for Ideal 

Gases 

 

Before the first law of thermodynamics can be applied to systems, ways to 

calculate the change in internal energy of the substance enclosed by the 

system boundary must be determined.  For real substances like water, the 

property tables are used to find the internal energy change.  For ideal gases 

the internal energy is found by knowing the specific heats.  Physics defines 

the amount of energy needed to raise the temperature of a unit of mass of a 

substance one degree as the specific heat at constant volume CV for a 

constant-volume process, and the specific heat at constant pressure CP for a 

constant-pressure process.  Recall that enthalpy h is the sum of the internal 

energy u and the pressure-volume product Pv. 

h u Pv 

Chapter 4 
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Simple Substance 

 

The thermodynamic state of a simple, homogeneous substance is specified by giving 

any two independent, intensive properties.  Let's consider the internal energy to be a 

function of T and v and the enthalpy to be a function of T and P as follows: 

( , )     and     ( , )u u T v h h T P 

The total differential of u is 

In thermodynamics, the specific heats are defined as  
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The total differential of h is  

Using thermodynamic relation theory, we could evaluate the remaining partial 

derivatives of u and h in terms of functions of P,v, and T.  These functions depend 

upon the equation of state for the substance.  Given the specific heat data and the 

equation of state for the substance, we can develop the property tables such as the 

steam tables.  

Ideal Gases 

 

For ideal gases, we use the thermodynamic function theory of Chapter 12 and the 

equation of state  (Pv = RT) to show that u, h, CV, and CP are  functions of 

temperature alone.  

 

For example when total differential for u = u(T,v) is written as above,  the function 

theory of Chapter 12 shows that 
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v

T

v

v

u
du C dT dv

v

P
du C dT T P dv

T

 
   

 

  
    

  

Let’s evaluate the following partial derivative for an ideal gas. 

For ideal gases 
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This result helps to show that the internal energy of an ideal gas does not depend 

upon specific volume.  To completely show that internal energy of an ideal gas is 

independent of specific volume, we need to show that the specific heats of ideal 

gases are functions of temperature only.  We will do this later in Chapter 12.  A similar 

result that applies to the enthalpy function for ideal gases can be reviewed in Chapter 

12. 

 

Then for ideal gases,  

The ideal gas specific heats are written in terms of ordinary differentials as  
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Using the simple “dumbbell model” for diatomic ideal gases, statistical 

thermodynamics predicts the molar specific heat at constant pressure as a function of 

temperature to look like the following 

“Dumbbell 

model” 

T 

Translation mode 

Vibration mode 

Rotation mode 

9

2
Ru

C
kJ

kmol K
p



7

2
Ru

5

2
Ru

The following figure shows how the molar specific heats vary with temperature for 

selected ideal gases. 

Read more about specific heats at 

 

http://www.iun.edu/~cpanhd/C101webnotes/matter-and-energy/specificheat.html 
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The differential changes in internal energy and enthalpy for ideal gases become  

du C dT

dh C dT

V

P




The change in internal energy and enthalpy of ideal gases can be expressed as  
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where CV,
ave

 and CP,
ave

 are average or constant values of the specific heats over the 

temperature range.  We will drop the ave subscript shortly.  

2a 

2b 

T2 

T1 

2c 1 

P-V diagram for several processes for an ideal gas. 

P 

V 

In the above figure an ideal gas undergoes three different process between the same 

two temperatures. 

 

   Process 1-2a:  Constant volume 

   Process 1-2b:  P = a + bV, a linear relationship 

   Process 1-2c:  Constant pressure 

 

These ideal gas processes have the same change in internal energy and enthalpy 

because the processes occur between the same temperature limits. 
Chapter 4 
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To find u and h we often use average, or constant, values of the specific heats.  

Some ways to determine these values are as follows:  

 

1.The best average value (the one that gives the exact results) 

 

See Table A-2(c) for variable specific data.  

2.Good average values are 

2 1 2 1
, ,

( ) ( ) ( ) ( )
        

2 2

V V P P
v ave P ave

C T C T C T C T
C C

 
  and  

, ,

2 1

( )         ( ) 

where

2

v ave V ave P ave P ave

ave

C C T C C T

T T
T

 



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3.Sometimes adequate (and most often used) values are the ones evaluated at 300 

K and are given in Table A-2(a).  

C C K C C Kv ave V P ave P, ,( ) ( ) 300 300    and      

Let's take a second look at the definition of u and h for ideal gases.  Just consider 

the enthalpy for now. 

Let's perform the integral relative to a reference state where  

h = href  at T = Tref.  

At any temperature, we can calculate the enthalpy relative to the reference state as  
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A similar result is found for the change in internal energy. 

( )
ref

T

ref v
T

u u C T dT   
These last two relations form the basis of the air tables (Table A-17 on a mass basis) 

and the other ideal gas tables (Tables A-18 through A-25 on a mole basis).  When 

you review Table A-17, you will find h and u as functions of T in K. Since the 

parameters Pr, vr, and so, also found in Table A=17, apply to air only in a particular 

process, call isentropic, you should ignore these parameters until we study Chapter 

7.  The reference state for these tables is defined as  

u T K

h T K

ref ref

ref ref

 

 

0 0

0 0

  at  

  at  

A partial listing of data similar to that found in Table A.17 is shown in the following 

figure.  
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In the analysis to follow, the “ave” notation is dropped.  In most applications for ideal 

gases, the values of the specific heats at 300 K given in Table A-2 are adequate 

constants.  

Exercise 

 

Determine the average specific heat for air at 305 K. 

 
CP ave, 

(Answer: 1.005 kJ/kgK, approximate the derivative of h with respect to T as differences)  
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Relation between CP and CV for Ideal Gases 

 

Using the definition of enthalpy (h = u + Pv) and writing the differential of enthalpy, the 

relationship between the specific heats for ideal gases is  

h u Pv

dh du d RT

C dT C dT RdT

C C R

P V

P V

 

 

 

 

( )

where R is the particular gas constant.  The specific heat ratio k (fluids texts often use 

 instead of k) is defined as 

k
C

C

P

V



Extra Problem 

 

Show that  

C
kR

k
C

R

k
P V




1 1
      and      
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Example 2-9 

 

Two kilograms of air are heated from 300 to 500 K.  Find the change in enthalpy by 

assuming  

 

 a.  Empirical specific heat data from Table A-2(c).  

 b.  Air tables from Table A-17. 

 c.  Specific heat at the average temperature from Table A-2(c). 

 d.  Use the 300 K value for the specific heat from Table A-2(a). 

 

a.Table A-2(c) gives the molar specific heat at constant pressure for air as  

C x T x T x T
kJ

kmol K
P = . + .  + . -  .  

-

-2 -5 -92811 01967 10 0 4802 10 1966 102 3

The enthalpy change per unit mole is 
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


h
h

M

kJ

kmol
kg

kmol

kJ

kg
  

5909 49

28 97

2039

.

.

.

 H m h kg
kJ

kg
kJ  ( )( . ) .2 2039 407 98
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b.Using the air tables, Table A-17, at T1 = 300 K, h1 = 300.19 kJ/kg and at T2 = 500 K, 

h2 = 503.02 kJ/kg 

 H m h kg
kJ

kg
kJ   ( )(503. . ) .2 02 30019 40566

The results of parts a and b would be identical if Table A-17 had been based on the 

same specific heat function listed in Table A-2(c). 

 

c.Let’s use a constant specific heat at the average temperature. 

 

Tave = (300 + 500)K/2 = 400 K.  At Tave , Table A-2 gives  

CP = 1.013 kJ/(kgK). 

   

For CP = constant, 

h h h C T T

kJ

kg K
K

kJ

kg

P ave   








2 1 2 1

1013 300

202 6

, ( )

. (500 )

.
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 H m h kg
kJ

kg
kJ  ( )( . ) .2 202 6 4052

d.Using the 300 K value from Table A-2(a), CP = 1.005 kJ/kg- K. 

   

For CP = constant, 

2 1 2 1( )

1.005 (500 300) 201.0

Ph h h C T T

kJ kJ
K

kg K kg

    

  


 H m h kg
kJ

kg
kJ  ( )( . ) .2 2010 402 0

Extra Problem 

 

Find the change in internal energy for air between 300 K and 500 K, in kJ/kg. 
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The Systematic Thermodynamics Solution Procedure 

 

When we apply a methodical solution procedure, thermodynamics problems are 

relatively easy to solve.  Each thermodynamics problem is approached the same way 

as shown in the following, which is a modification of the procedure given in the text:  

Thermodynamics Solution Method 

 

1. Sketch the system and show energy interactions across the boundaries. 

 

2. Determine the property relation.  Is the working substance an ideal gas or a real 

substance? Begin to set up and fill in a property table. 

 

3. Determine the process and sketch the process diagram.  Continue to fill in the 

property table. 

 

4. Apply conservation of mass and conservation of energy principles. 

 

5. Bring in other information from the problem statement, called physical constraints, 

such as the volume doubles or the pressure is halved during the process. 

 

6. Develop enough equations for the unknowns and solve.  
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Example 4-7 
 

A tank contains nitrogen at 27C.  The temperature rises to 127C by heat transfer to the 

system.  Find the heat transfer and the ratio of the final pressure to the initial pressure.  

System:  Nitrogen in the tank.  

2 

T2=127C 
T1= 

27C 

P 

V 

 

1 

P-V diagram for a constant 

volume process 

Nitrogen gas 

System 

boundary 

Property Relation: Nitrogen is an ideal gas.  The ideal gas property relations apply.  

Let’s assume constant specific heats. (You are encouraged to rework this problem 

using variable specific heat data.) 

 

Process: Tanks are rigid vessels; therefore, the process is constant volume. 

 

Conservation of Mass: 

m m2 1
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Using the combined ideal gas equation of state, 

PV

T

PV

T

2 2

2

1 1

1



Since R is the particular gas constant, and the process is constant volume,  

V V

P

P

T

T

K

K

2 1

2

1

2

1

127 273

27 273
1333



 





( )

( )
.

Conservation of Energy: 

 

The first law closed system is 

in out

net net

E E E

Q W U

  

  

For nitrogen undergoing a constant volume process (dV = 0), the net work is (Wother = 

0)  
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Using the ideal gas relations with Wnet = 0, the first law becomes (constant specific 

heats)  

The heat transfer per unit mass is 
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Example 4-8 

 

Air is expanded isothermally at 100C from 0.4 MPa to 0.1 MPa.  Find the ratio 

of the final to the initial volume, the heat transfer, and work.  

 

 

System:  Air contained in a piston-cylinder device, a closed system 
 

Air     Wb 

T = const. 

System   

boundary 

P-V  diagram for T= constant 

P 

V 

1 

2 

Process: Constant temperature  
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Property Relation: Assume air is an ideal gas and use the ideal gas 

property relations with constant specific heats. 

PV mRT

u C T TV



  ( )2 1

Conservation of Energy:  
E E E

Q W U

in out

net net

 

 





The system mass is constant but is not given and cannot be calculated; 

therefore, let’s find the work and heat transfer per unit mass.  
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Work Calculation:  

Conservation of Mass: For an ideal gas in a closed system (mass = constant), we 

have m m

PV

RT

PV

RT

1 2

1 1

1

2 2

2





Since the R's cancel and T2 = T1 

V

V

P

P

MPa

MPa

2

1

1

2

0 4

01
4  

.

.
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Then the work expression per unit mass becomes 

The net work per unit mass is 

w w
kJ

kg
net b, , .12 120 148 4  

Now to continue with the conservation of energy to find the heat transfer.  Since T2 = 

T1 = constant,  

 U m u mC T TV12 12 2 1 0   ( )

So the heat transfer per unit mass is  
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q
Q

m

q w u

q w

kJ

kg

net
net

net net

net net



  





 0

148 4.

The heat transferred to the air during an isothermal expansion process equals the 

work done. 

Examples Using Variable Specific Heats 

 

Review the solutions in Chapter 4 to the ideal gas examples where the variable 

specific heat data are used to determine the changes in internal energy and enthalpy.  
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Extra Problem for You to Try: 

 

An ideal gas, contained in a piston-cylinder device, undergoes a polytropic process 

in which the polytropic exponent n is equal to k, the ratio of specific heats.  Show 

that this process is adiabatic.  When we get to Chapter 7 you will find that this is an 

important ideal gas process. 

 

Internal Energy and Enthalpy Changes of Solids and Liquids 

 

We treat solids and liquids as incompressible substances.  That is, we assume that 

the density or specific volume of the substance is essentially constant during a 

process.  We can show that the specific heats of incompressible substances (see 

Chapter 12) are identical.  

The specific heats of incompressible substances depend only on temperature; 

therefore, we write the differential change in internal energy as  

du C dT CdTV 
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and assuming constant specific heats, the change in internal energy is 

 u C T C T T  ( )2 1

Recall that enthalpy is defined as  

h u Pv 
The differential of enthalpy is 

dh du Pdv vdP  

For incompressible substances, the differential enthalpy becomes 

dv

dh du Pdv vdP

dh du vdP



   

 

0

0

Integrating, assuming constant specific heats  

    h u v P C T v P   

For solids the specific volume is approximately zero; therefore, 

  

  

h u v P

h u C T

solid solid

solid solid

  

 

0
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For liquids, two special cases are encountered: 

 

1.Constant-pressure processes, as in heaters (P = 0)  

  h u C Tliquid liquid 

2.Constant-temperature processes, as in pumps (T = 0) 

    

 

h u v P C T v P

h v P

liquid liquid

liquid

    



0

We will derive this last expression for h again once we have discussed the first law 

for the open system in Chapter 5 and the second law of thermodynamics in Chapter 

7. 

 

The specific heats of selected liquids and solids are given in Table A-3.  
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Example 4-8 Incompressible Liquid 

 

A two-liter bottle of your favorite beverage has just been removed from the trunk of 

your car.  The temperature of the beverage is 35C, and you always drink your 

beverage at 10C.   

a. How much heat energy must be removed from your two liters of beverage? 

b. You are having a party and need to cool 10 of these two-liter bottles in one-

half hour.  What rate of heat removal, in kW, is required?  Assuming that your 

refrigerator can accomplish this and that electricity costs 8.5 cents per kW-hr, 

how much will it cost to cool these 10 bottles? 

System: The liquid in the constant volume, closed system container 

Qout 

The heat  

removed 

System  

boundary 

My 

beverage 
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Property Relation:  Incompressible liquid relations, let’s assume that the beverage is 

mostly water and takes on the properties of liquid water.  The specific volume is 0.001 

m3/kg, C = 4.18 kJ/kgK. 

 

Process:  Constant volume 
V V2 1

Conservation of Mass: 

Conservation of Energy: 

 

The first law closed system is 

E E Ein out  
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Since the container is constant volume and there is no “other” work done on the 

container during the cooling process, we have 

The only energy crossing the boundary is the heat transfer leaving the container.  

Assuming the container to be stationary, the conservation of energy becomes 

 

  

E E

Q U mC T

out

out



 

(2 )(4.18 )(10 35)

209.2

209.2

out

out

out

kJ
Q kg K

kg K

Q kJ

Q kJ

  


  



The heat transfer rate to cool the 10 bottles in one-half hour is  
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Cost kW hr
kW hr






( . )( . )
$0.

$0.

1162 05
085

05
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