UNIVERSITÀ DEGLI STUDI DELLA BASILICATA DIPARTIMENTO DI INGEGNERIA

$egin{aligned} & \operatorname{Prova} \ \operatorname{di}^1 \ & Analisi \ Matematica \ I \ & (\operatorname{ING0002}, \operatorname{ING0276}, \operatorname{ING0008}, \operatorname{IN0500}) \end{aligned}$

16 settembre 2025

 $m{1}$ Calcolare il limite delle seguenti successioni:

(a)
$$\left\{\sum_{k=0}^{n} \left(\cot \frac{2}{3}\pi\right)^{n}\right\}_{n\in\mathbb{N}}$$
 , (b) $\left\{\sqrt[n]{\binom{7n}{5n}}\right\}_{n\geq 1}$

(c)
$$\left\{ \frac{\sqrt[3]{1 - 7n^2 + 4n^6} + \sqrt[3]{7n^2 + 4n^5 - 4n^6}}{\sqrt[6]{4n^6 - 7n^2}} \right\}_{n \ge 3}$$
.

- [2] (i) Definire la distanza tra due numeri complessi ed enunciarne le sue proprietà.
 - (ii) Sia $A \subseteq \mathbb{R}$. Dimostrare che A è chiuso se e solo se $A' \subseteq A$.
 - (iii) Si può avere una funzione continua $f : \mathbb{R} \to \mathbb{R}$ che trasformi l'intervallo [-2, 2] nell'intervallo [-3, 3]? Giustificare la risposta.
 - (iv) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile 2n volte in un punto $x_0 \in \mathcal{D}(f)$ per cui $f^{(k)}(x_0) = 0$ per ogni $1 \le k \le 2n 1$. Dimostrare che se $f^{(2n)}(x_0) < 0$ allora x_0 è un punto di massimo locale.
- [3] Per ciascuna delle seguenti equazioni differenziali del primo ordine, determinare la soluzione che verifica alla condizione iniziale y(0) = -1:

(A)
$$y' + \frac{1}{3}y(x^3 + 3x^2 + 1) = y^4(x^3 + 3x^2 + 1)$$
,

(B)
$$y' = \frac{3x - 2y - 3}{-3x + 2y - 2}$$
.

¹Ogni esercizio ben risolto vale 10 punti. Durata totale della prova: 2 ore. Risposte non attinenti alle lezioni svolte (ad esempio scaricate da internet) non verranno prese in considerazione.