UNIVERSITÀ DEGLI STUDI DELLA BASILICATA SCUOLA DI INGEGNERIA

$egin{aligned} &\operatorname{Prova}\ \operatorname{di}^1 \ &Analisi\ Matematica\ I \ &(\operatorname{ING0002},\ \operatorname{ING0276},\ \operatorname{ING0008},\ \operatorname{IN0500}) \end{aligned}$

26 settembre 2023

[1] Si considerino le funzioni

$$f(x) = \begin{cases} 1 - \frac{1 - \cos(x+1)}{(x+1)^2} &, & x > -1\\ x + \frac{3}{2} &, & x \le -1 \end{cases}$$

$$g(x) = (x-2)\sin|x-2|$$
 , $h(x) = (4x+5)^{6/5}$.

- (a) Stabilire se esse sono continue.
- (b) Stabilire se esse sono derivabili in ogni punto del dominio e, in caso affermativo, scrivere per ciascuna la funzione derivata.
- [2] (i) Siano $z, w \in \mathbb{C}$. Dimostrare che $e^z = e^w$ se e solo se $w = z + i 2k\pi$, per $k \in \mathbb{Z}$.
 - (ii) Dare un esempio di serie divergente per cui la successione dei termini della serie abbia limite nullo.
 - (iii) Cosa significa che due funzioni sono infiniti dello stesso ordine per $x \to -\infty$? Fornire anche un esempio.
 - (iv) Dopo aver definito la nozione di funzione regolare a tratti in un intervallo [a, b], enunciare compiutamente e dimostrare che per una tale funzione si ha

$$f(b) - f(a) = \int_a^b f'(x) dx.$$

[3] Studiare e tracciare il grafico della funzione

$$F(x) = 1 + \arcsin f(x)$$

nei casi (A) $f(x) = \cos x$ e (B) $f(x) = \sinh x$.

Stabilire inoltre se le funzioni ottenute sono uniformemente continue giustificando la risposta.

¹Ogni esercizio ben risolto vale 10 punti. Durata totale della prova: 2 ore. Risposte non attinenti alle lezioni svolte (ad esempio scaricate da internet) non verranno prese in considerazione.