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1. Esercizi sul principio di induzione matematica

Teorema 1.1 (Principio d’induzione matematica). Sia {P (n)}n∈N una famiglia di
proposizioni enunciate ciascuna per il naturale n ∈ N. Se

(i) P (0) è vera,
(ii) per n ∈ N l’implicazione “P (n)⇒ P (n+ 1)” è vera,

allora la proposizione P (n) è vera per ogni n ∈ N.

Dal principio d’induzione matematica segue il seguente

Corollario 1.1. Sia {P (n)}n∈N una famiglia di proposizioni enunciate ciascuna per il
naturale n ∈ N. Se

(i) P (n0) è vera per un certo n0 ∈ N,
(ii) l’implicazione “P (n)⇒ P (n+ 1)” è vera per n ∈ N, n ≥ n0,

allora la proposizione P (n) è vera per ogni n ∈ N, n ≥ n0.

Esercizio 1.1. Dimostrare che per ogni n ∈ N è:

(i) 1 + 2 + · · ·+ (n− 1) + n =
n(n+ 1)

2
,

(ii) 1 + 3 + · · ·+ (2n− 1) + (2n+ 1) = (n+ 1)2,

(iii) 12 + 22 + · · ·+ (n− 1)2 + n2 =
n(n+ 1)(2n+ 1)

6
.

� Soluzione di (i). Sia P (n) data da:

P (n) : 1 + 2 + · · ·+ (n− 1) + n =
n(n+ 1)

2
.

Per dimostrare la formula data, basta usare il principio d’induzione matematica. A tal
fine verifichiamo la veridicità della P (0). È ovvio che per n = 0 i membri dell’uguaglianza
scritta sopra sono entrambi uguali a 0 e dunque P (0) è soddisfatta.
Supponiamo ora che P (n) sia soddisfatta; vogliamo provare che anche P (n + 1) è soddi-
sfatta. Essa afferma che

1 + 2 + · · ·+ n+ (n+ 1) =
(n+ 1)[(n+ 1) + 1]

2
=

(n+ 1)(n+ 2)

2
.

Si ha:

1 + 2 + · · ·+ n+ (n+ 1)
P (n)
=

n(n+ 1)

2
+ n+ 1 =

=
n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
.

Dunque il principio d’induzione matematica ci permette di affermare che la formula

1 + 2 + · · ·+ (n− 1) + n =
n(n+ 1)

2
è vera per ogni n ∈ N.

Soluzione di (ii). Sia ora P (n) data da:

P (n) : 1 + 3 + · · ·+ (2n− 1) + (2n+ 1) = (n+ 1)2 .

Per dimostrare la formula data, anche qui basta usare il principio d’induzione matematica.
Verifichiamo la veridicità della P (0). Per n = 0 i membri dell’uguaglianza scritta sopra
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sono entrambi uguali a 1 e dunque P (0) è soddisfatta.
Supponiamo ora che P (n) sia soddisfatta; vogliamo provare che anche P (n + 1) è soddi-
sfatta, e cioè che

P (n+ 1) : 1 + 3 + · · ·+ (2n+ 1) + (2n+ 3) = (n+ 2)2 .

Si ha:

1 + 3 + · · ·+ (2n+ 1) + (2n+ 3)
P (n)
= (n+ 1)2 + 2n+ 3 =

= n2 + 2n+ 1 + 2n+ 3 = n2 + 4n+ 4 = (n+ 2)2 .

Dunque il principio d’induzione matematica ci permette di affermare che la formula

1 + 3 + · · ·+ (2n− 1) + (2n+ 1) = (n+ 1)2

è vera per ogni n ∈ N.

Soluzione di (iii). Sia P (n) data da:

P (n) : 12 + 22 + · · ·+ (n− 1)2 + n2 =
n(n+ 1)(2n+ 1)

6
.

Usiamo anche qui il principio d’induzione matematica. Per n = 0 i membri dell’ugua-
glianza scritta sopra sono entrambi uguali a 0 e dunque P (0) è soddisfatta.
Supponiamo ora che P (n) sia soddisfatta; vogliamo provare che anche P (n + 1) è soddi-
sfatta, e cioè che

P (n+ 1) : 12 + 22 + · · ·+ n2 + (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6
.

Si ha:

12 + 22 + · · ·+ n2 + (n+ 1)2
P (n)
=

n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6
=

(n+ 1)[n(2n+ 1) + 6(n+ 1)]

6
=

=
(n+ 1)[2n2 + n+ 6n+ 6]

6
=

(n+ 1)(2n2 + 4n+ 3n+ 6)

6
=

=
(n+ 1)[2n(n+ 2) + 3(n+ 2)]

6
=

(n+ 1)(n+ 2)(2n+ 3)

6
.

Dunque il principio d’induzione matematica ci permette di affermare che la formula

12 + 22 + · · ·+ (n− 1)2 + n2 =
n(n+ 1)(2n+ 1)

6

è vera per ogni n ∈ N. �

Esercizio 1.2. Dimostrare che per ogni a, b ∈ R e n ∈ N \ {0} è:

an − bn = (a− b)
n−1∑
k=0

akbn−1−k .

� Soluzione. Poniamo

P (n) : an − bn = (a− b)
n−1∑
k=0

akbn−1−k .
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Per n = 1 il primo membro dell’uguaglianza è a − b, cos̀ı come lo è il secondo. Quindi
P (1) è soddisfatta.
Supponiamo vera P (n) e proviamo P (n+ 1), cioè che

an+1 − bn+1 = (a− b)
n∑
k=0

akbn−k .

Scriviamo

an+1 − bn+1 = an+1 − anb+ anb− bn+1 =

= an(a− b) + b(an − bn)
P (n)
= (a− b)

[
an + b

n−1∑
k=0

akbn−1−k

]
=

= (a− b)[an + bn + abn−1 + · · · an−1b] = (a− b)
n∑
k=0

akbn−k .

Pertanto per il principio d’induzione matematica, la formula proposta è vera. �

Esercizio 1.3. Dimostrare la disuguaglianza di Bernoulli, e cioè, per a ∈ R, a > −1
e per n ∈ N si ha

(1 + a)n ≥ 1 + na .

� Soluzione. Posto

P (n) : (1 + a)n ≥ 1 + na ,

per n = 0 la disuguaglianza è soddisfatta (in tal caso vale l’uguaglianza). Tenuto conto
che 1 + a > 0 si ha che

(1 + a)n+1 = (1 + a)(1 + a)n
P (n)

≥ (1 + a)(1 + na) = 1 + na+ a+ na2 >

> 1 + (n+ 1)a

e di conseguenza P (n) implica P (n+ 1). Dal principio d’induzione matematica si ottiene
allora la disuguaglianza scritta. �

Esercizio 1.4. Dimostrare la formula del binomio di Newton e cioè che per ogni
a, b ∈ R e n ∈ N è

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k .

� Soluzione. Per n = 0 la formula è banalmente verificata. Posto

P (n) : (a+ b)n =
n∑
h=0

(
n

h

)
ahbn−h

si ha che

(a+ b)n+1 = (a+ b)(a+ b)n
P (n)
= (a+ b)

n∑
h=0

(
n

h

)
ahbn−h =

(1.1) =
n∑
h=0

(
n

h

)
ah+1bn−h +

n∑
h=0

(
n

h

)
ahbn+1−h .
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Nella prima sommatoria di (1.1) poniamo k = h+ 1 cosicché h = k − 1 e

n∑
h=0

(
n

h

)
ah+1bn−h =

n∑
k−1=0

(
n

k − 1

)
akbn+1−k =

n+1∑
k=1

(
n

k − 1

)
akbn+1−k .

Quindi sostituendo otteniamo

(a+ b)n+1 =
n+1∑
k=1

(
n

k − 1

)
akbn+1−k +

n∑
k=0

(
n

k

)
akbn+1−k =

=
n∑
k=1

(
n

k − 1

)
akbn+1−k +

(
n

n

)
an+1 +

(
n

0

)
bn+1 +

n∑
k=1

(
n

k

)
akbn+1−k =

=

(
n

0

)
bn+1 +

n∑
k=1

[(
n

k − 1

)
+

(
n

k

)]
akbn+1−k +

(
n

n

)
an+1 .

Ora (
n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!(n+ 1− k)!
+

n!

k!(n− k)!
=

=
n!k + n!(n+ 1− k)

k!(n+ 1− k)!
=

(n+ 1)!

k!(n+ 1− k)!
=

(
n+ 1

k

)
e quindi

(a+ b)n+1 = bn+1 +
n∑
k=1

(
n+ 1

k

)
akbn+1−k + an+1 =

n+1∑
k=0

(
n+ 1

k

)
akbn+1−k

che dà la veridicità della P (n+ 1). �

Esercizio 1.5. Dimostrare che 2nn! < nn per n ∈ N, n ≥ 6.

� Soluzione. Sia

P (n) : 2nn! < nn .

Per n = 6 si ha che 2nn! = 266! = 46.080 mentre nn = 66 = 46.656 e dunque la
disuguaglianza è verificata. (Si osservi che per 1 ≤ n ≤ 5 la disuguaglianza è falsa.)
Supposta ora vera P (n), proviamo P (n+ 1). Si ha:

(n+ 1)n+1 = (1 + n)n+1 =
n+1∑
k=0

(
n+ 1

k

)
nn+1−k ≥

≥
(
n+ 1

0

)
nn+1 +

(
n+ 1

1

)
nn +

(
n+ 1

2

)
nn−1 =

= nn+1 + (n+ 1)nn +
1

2
(n+ 1)nn = nn

[
n+

3

2
(n+ 1)

]
=

= nn
(

5

2
n+

3

2

)
= nn

(
2n+

n+ 3

2

)
≥ nn

(
2n+

9

2

)
> nn(2n+ 4) = 2nn(n+ 2)

cioè abbiamo

(1.2) 2(n+ 2)nn < (n+ 1)n+1 .
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Si osservi che, dall’ipotesi di induzione,

2n+1(n+ 1)! = 2(n+ 1) 2n n! < 2(n+ 1)nn

per cui, tenuto conto della (1.2),

2n+1(n+ 1)! < 2(n+ 1)nn < 2(n+ 2)nn < (n+ 1)n+1

che è l’asserto della P (n+ 1). �
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2. Esercizi sulle successioni e serie di numeri reali

Esercizio 2.1. Dimostrare che

lim
n→∞

n
√
a = 1

per a ∈ R, a > 0.

� Soluzione. L’asserto è banalmente vero se a = 1.
Se a > 1 allora n

√
a > 1 e dunque potremo scrivere n

√
a = 1 + an, con an > 0. Allora

a = (1 + an)n ≥ 1 + nan > nan da cui an <
a

n
. Pertanto

0 < an <
a

n

e dal teorema dei due carabinieri si ha lim
n→∞

an = 0. Dunque

lim
n→∞

n
√
a = lim

n→∞
(1 + an) = 1 .

Se 0 < a < 1 allora 0 < n
√
a < 1 e

1

a
> 1. Si pone n

√
a =

1

1 + an
, con an > 0. Allora

a =
1

(1 + an)n
e siccome ancora (1 + an)n ≥ 1 + nan > nan, segue che an <

1

na
.

Pertanto

0 < an <
1

na

e dal teorema dei due carabinieri si ha lim
n→∞

an = 0. Dunque

lim
n→∞

n
√
a = lim

n→∞

1

1 + an
= 1 . �

Esercizio 2.2. Dimostrare che

lim
n→∞

n
√
n = 1 .

� Soluzione. Si scriva n
√
n =

(√
n
√
n
)!2

=
(

n
√√

n
)2

. Siccome n > 1, allora n
√√

n > 1 e

scriviamo n
√√

n = 1 + an, con an > 0. Ne segue che
√
n = (1 + an)n ≥ 1 + nan > nan

da cui 0 < an ≤
1√
n

e, per il teorema dei due carabinieri, lim
n→∞

an = 0. Si ha allora

lim
n→∞

n
√
n = lim

n→∞

(
n

√√
n

)2

= lim
n→∞

(1 + an)2 = 1 . �

Esercizio 2.3. Calcolare

lim
n→∞

an

per a ∈ R, a 6= 0.
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� Soluzione. Se a = 1 il limite proposto è 1. Se a = −1 si ottiene la successione
{(−1)n}n∈N il cui limite non esiste.

Se 0 < a < 1, poniamo a =
1

1 + h
, con h > 0. Allora

0 < an =
1

(1 + h)n
≤ 1

1 + nh
<

1

nh

e dal teorema dei due carabinieri segue che il limite proposto è 0.
Se −1 < a < 0 allora 0 < |a| < 1 e per quanto visto lim

n→∞
|a|n = 0. Dunque per ogni

ε > 0 esiste nε ∈ N tale che per n ≥ nε sia
∣∣|a|n∣∣ = |a|n < ε. Ora

|a|n = |a| · · · |a|︸ ︷︷ ︸
n-volte

= | a · · · a︸ ︷︷ ︸
n-volte

| = |an| ,

dunque per n ≥ nε è |an| < ε. Da questo segue che lim
n→∞

an = 0 anche nel caso −1 < a < 0.

Se a > 1 allora scriviamo a = 1 + h, con h > 0 e quindi an = (1 + h)n ≥ 1 + nh > nh.
Siccome lim

n→∞
nh = +∞, per ogni K > 0 esiste nK ∈ N tale che per ogni n ∈ N,

n > nK , si abbia nh > K e di conseguenza per lo stesso nK , se n > nK , si ha che an > K
ovvero che lim

n→∞
an = +∞.

Se infine a < −1, scriviamo a = −b, per b > 1. Ne segue che an = (−1)nbn e il limite
della successione {(−1)nbn}n∈N non esiste in quanto le due sottosuccessioni

{(−1)2kb2k}k∈N = {b2k}k∈N e {(−1)2k+1b2k+1}k∈N = {−b2k+1}k∈N divergono rispettivamen-
te a +∞ e −∞.

Ricapitolando si ha

lim
n→∞

an =


0 se 0 < |a| < 1

1 se a = 1

+∞ se a > 1

non esiste se a ≤ −1 . �

Osservazione 2.1. Per a = 0 si ha la successione costantemente nulla ed è ovvio che
lim
n→∞

an.

Esercizio 2.4. Dimostrare che
lim
n→∞

n
√
nα = 1

per α ∈ R.

� Soluzione. Per α = 0 è ovvio. Se α ∈ N\{0}, i.e. α = m ∈ N\{0}, allora

lim
n→∞

n
√
nm = ( lim

n→∞
n
√
n) · · · ( lim

n→∞
n
√
n)︸ ︷︷ ︸

m

= 1 .

Se invece α ∈ Z\N allora si pone α = −m, per m ∈ N\{0}, e

lim
n→∞

n
√
n−m = lim

n→∞
n

√
1

nm
= lim

n→∞

1

( n
√
nm)

= 1 .
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In ogni caso per α ∈ Z è lim
n→∞

n
√
nα = 1.

Infine se α ∈ R\Z, tenuto conto che [α] ≤ α ≤ [α] + 1, con [α] ∈ Z, si ha

n
√
n[α] ≤ n

√
nα ≤ n

√
n[α]+1

e dal teorema dei due carabinieri si ricava l’asserto. �

Esercizio 2.5. Calcolare, per a ∈ R, a 6= 0, lim
n→∞

n

an
.

� Soluzione. Se 0 < a < 1 allora
1

a
> 1 e dunque lim

n→∞

1

an
= lim

n→∞

(
1

a

)n
= +∞. Poichè

anche lim
n→∞

n = +∞, per 0 < a < 1 si ottiene

lim
n→∞

n

an
= lim

n→∞
n · 1

an
= +∞ .

Se invece −1 < a < 0 allora a = −b con 0 < b < 1. La sottosuccessione{
2k

(−1)2kb2k

}
k∈N

=

{
2k

b2k

}
k∈N

diverge a +∞, mentre la sottosuccessione{
2k + 1

(−1)2k+1b2k+1

}
k∈N

=

{
−2k + 1

b2k+1

}
k∈N

diverge a −∞. Di conseguenza non esiste il lim
n→∞

n

an
per −1 < a < 0.

Anche per a = −1 questo limite non esiste, mentre per a = 1 il limite è +∞.

Se a > 1 allora lim
n→∞

an = +∞ e lim
n→∞

n

an
si presenta nella forma indeterminata “

∞
∞

”.

In questo caso
√
a > 1 e scriviamo

√
a = 1 + h, con h > 0. Allora

(
√
a)n = (1 + h)n ≥ 1 + nh > nh

da cui an > n2h2 e quindi

0 <
n

an
<

1

nh2
.

Applicando il teorema dei due carabinieri si ricava che lim
n→∞

n

an
= 0 per a > 1.

Se invece a < −1 allora si pone a = −b, con b > 1, e 0 ≤
∣∣∣ n
an

∣∣∣ =
n

bn
< ε per ogni

ε > 0, per n > nε, essendo lim
n→∞

n

bn
= 0. Ne segue che lim

n→∞

n

an
= 0 per a < −1.

Ricapitolando,

lim
n→∞

n

an
=


+∞ se 0 < a ≤ 1

non esiste se − 1 ≤ a < 0

0 se a > 1, a < −1 . �
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Osservazione 2.2. Si noti che

lim
n→∞

an

n
= +∞ se a > 1

(essendo in tal caso an > 0 per ogni n ∈ N) mentre non esiste se a < −1.
Più in generale,

lim
n→∞

an

nα
= +∞

per a > 1 e α > 0.

Infatti
an

nα
=

(
an/α

n

)α
=

(
(a1/α)n

n

)α
=

(
bn

n

)α
dove si è posto b = a1/α e b > 1. Per ogni K > 0 si consideri K1/α > 0 e poiché

lim
n→∞

bn

n
= +∞, si ha che esiste nK ∈ N tale che, per n ∈ N, n > nK , sia

bn

n
> K1/α.

Quindi anche

(
bn

n

)α
> K e perciò lim

n→∞

(
bn

n

)α
= +∞.

Esercizio 2.6. Dimostrare che

lim
n→∞

an

n!
= 0 ,

per ogni a ∈ R.

� Soluzione. Se |a| < 1 allora lim
n→∞

an = 0 e lim
n→∞

1

n!
= 0, dunque lim

n→∞

an

n!
= 0.

Se a = 1 allora banalmente il limite proposto è nullo; se a = −1, per ogni ε > 0 si ha
che ∣∣∣∣(−1)n

n!

∣∣∣∣ =
1

n!
<

1

n
< ε

per n > nε, nε = [
1

ε
] + 1. Dunque ancora lim

n→∞

an

n!
= 0.

Se a > 1 poiché lim
n→∞

a

n
= 0, per ogni ε > 0 esiste nε ∈ N tale che per n ∈ N, n > nε, si

abbia
a

n
< ε. In particolare per ε =

1

2
si può prendere n > [2a] + 1.

Supponiamo allora di aver fissato k ∈ N con k > [2a] + 1. Ogni n ∈ N, n > k, è un
naturale maggiore di [2a] + 1 e anche k + 1 > [2a] + 1, e cos̀ı via i suoi successivi fino a

n. Ne segue che
a

k + 1
<

1

2
,

a

k + 2
<

1

2
, ecc.,

a

n
<

1

2
, da cui

0 <
an

n!
=
ak

k!

an−k

(k + 1) · · ·n︸ ︷︷ ︸
n−k

=
ak

k!

a

k + 1

a

k + 2
· · · a

n
<

<
ak

k!

1

2
· · · 1

2︸ ︷︷ ︸
n−k

=
ak

k!

(
1

2

)n−k
=

(2a)k

k!

(
1

2

)n
.

Ora lim
n→∞

(
1

2

)n
= 0, dunque l’asserto segue dal teorema dei due carabinieri.
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Se a < −1, posto a = −b, con b > 1, allora
an

n!
= (−1)n

bn

n!
e poiché lim

n→∞

bn

n!
= 0,

si ottiene che anche il limite proposto per a < −1 è nullo. �

Esercizio 2.7. Dimostrare che

lim
n→∞

n
√
n! = +∞ .

� Soluzione. Sia K > 0, allora sappiamo che lim
n→∞

Kn

n!
= 0. Dunque per ogni ε > 0 esiste

nε ∈ N tale che per n > nε si abbia
Kn

n!
< ε. In particolare per ε = 1 esiste n1 ∈ N per

cui per n > n1 sia
Kn

n!
< 1. Questo accade se e solo se per n > n1 è n! > Kn ovvero se

per n > n1 è n
√
n! > K. Dalla scelta arbitraria di K > 0 segue allora che

lim
n→∞

n
√
n! = +∞ . �

Esercizio 2.8. Dimostrare che

lim
n→∞

n!

nn
= 0 .

� Soluzione. Sappiamo che per n ≥ 6 è 2nn! < nn; allora

0 <
n!

nn
<

(
1

2

)n
e pertanto l’asserto segue dal teorema dei due carabinieri. �

Esercizio 2.9. Calcolare
lim
n→∞

√
n+ 1−

√
n .

� Soluzione. Basta scrivere

√
n+ 1−

√
n =

(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)√

n+ 1 +
√
n

da cui si ricava che

lim
n→∞

(
√
n+ 1−

√
n) = lim

n→∞

1√
n+ 1 +

√
n

= 0 . �

Esercizio 2.10. Sia {an}n∈N una successione divergente a +∞. Se b > 1 dimostrare che

lim
n→∞

an
ban

= 0 .

� Soluzione. Senza perdere di generalità, si può supporre che sia an > 1, cosicché la parte
intera [an] ≥ 1. Di conseguenza

lim
n→∞

[an]

b[an]
= 0 .

Poiché
[an]

b[an]+1
≤ an
ban
≤ [an] + 1

b[an]
,

passando al limite per n tendente all’infinito, dal teorema dei due carabinieri si ha la tesi.
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Da questo segue anche che

lim
n→∞

aβn
ban

= 0

per ogni β ∈ R. �

Esercizio 2.11. Calcolare

lim
n→∞

(log n)β

nα
e lim

n→∞

nα(log n)β

an
,

per a > 1, α, β > 0.

� Soluzione. Per il primo limite, posto an = log n, si ha che n = ean e dunque,
dall’esercizio precedente, segue che

lim
n→∞

(log n)β

nα
= lim

n→∞

aβn
(eα)an

= 0 .

Per il secondo limite, posto an = ((
√
a)n)

2
, siccome

√
a > 1, si ha

nα(log n)β

an
=

nα

(
√
a)n

(log n)β

(
√
a)n

=
nα

(
√
a)n

(log n)β

n

n

(
√
a)n

e ciascun fattore è il termine generale di una successione convergente a 0. �

Esercizio 2.12. Calcolare

lim
n→∞

sinn√
n
.

� Soluzione. Osserviamo che ∣∣∣∣sinn√n
∣∣∣∣ ≤ 1√

n

e dunque per ogni ε > 0 esiste nε ∈ N tale che, per n ∈ N, n > nε, si abbia
1√
n
< ε.

Allora per n > nε, è

∣∣∣∣sinn√n
∣∣∣∣ < ε, ovvero

lim
n→∞

sinn√
n

= 0 . �

Esercizio 2.13. Calcolare

lim
n→∞

( n
√
n− 3) .

Esercizio 2.14. Sia r ∈ Q e {an}n∈N una successione per cui lim
n→∞

an = 0. Allora

lim
n→∞

(1 + an)r − 1

an
= r .

� Soluzione. Per r = 0 è banalmente vero. Per r = p ∈ N\{0} si ha

(1 + an)p − 1 = an

p−1∑
k=0

(1 + an)k =⇒ (1 + an)p − 1

an
=

p−1∑
k=0

(1 + an)k
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da cui

lim
n→∞

(1 + an)p − 1

an
= lim

n→∞

p−1∑
k=0

(1 + an)k =

p−1∑
k=0

lim
n→∞

(1 + an)k =

p−1∑
k=0

1 = p .

Per r ∈ Z\N, posto r = −p, p ∈ N\{0} si ha

lim
n→∞

(1 + an)−p − 1

an
= lim

n→∞

1− (1 + an)p

an(1 + an)p
=

= − lim
n→∞

(1 + an)p − 1

an(1 + an)p
= −

(
lim
n→∞

(1 + an)p − 1

an

)(
lim
n→∞

1

(1 + an)p

)
= −p .

Per r ∈ Q\Z, poniamo r =
p

q
con p, q ∈ Z\{0}, p e q primi fra loro; senza perdere di

generalità, possiamo assumere p > 0. Si ha

(1 + an)p/q − 1

an
=

[
(1 + an)1/q

]p − 1

(1 + an)1/q − 1
· (1 + an)1/q − 1

an

dove [
(1 + an)1/q

]p − 1 =
[
(1 + an)1/q − 1

] p−1∑
k=0

(1 + an)k/p ,

quindi

(2.1)
(1 + an)p/q − 1

an
=

(1 + an)1/q − 1

an

p−1∑
k=0

(1 + an)k/p .

Scriviamo an = 1 + an − 1 =
[
(1 + an)1/q

]q − 1.
Se q > 0 allora

an = [(1 + an)1/q − 1]

q−1∑
k=0

(1 + an)k/q .

Se invece q < 0, posto q = −m, m > 0, si ha

an = [(1 + an)1/m]m − 1 = [(1 + an)1/m − 1]
m−1∑
k=0

(1 + an)k/m =

= [(1 + an)−1/q − 1]

−q−1∑
k=0

(1 + an)−k/q =
1− (1 + an)1/q

(1 + an)1/q

−q−1∑
k=0

(1 + an)−k/q

i.e.

an = −(1 + an)1/q − 1

(1 + an)1/q

−q−1∑
k=0

(1 + an)−k/q .
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Ne segue che

(1 + an)p/q − 1

an
=



p−1∑
k=0

(1 + an)k/q

q−1∑
k=0

(1 + an)k/q

, q > 0

−(1 + an)1/q

p−1∑
k=0

(1 + an)k/p

−q−1∑
k=0

(1 + an)−k/q

, q < 0 .

Quindi

lim
n→∞

(1 + an)p/q − 1

an
=



p−1∑
k=0

1

q−1∑
k=0

1

=
p

q
, q > 0

−

p−1∑
k=0

1

−q−1∑
k=0

1

= − p

(−q)
=
p

q
, q < 0 .

In ogni caso

lim
n→∞

(1 + an)p/q − 1

an
=
p

q
. �

Osservazione 2.3. Più in generale per α ∈ R, si ha

lim
n→∞

(1 + an)α − 1

an
= α .

Esercizio 2.15. Calcolare

lim
n→∞

n∏
k=2

(
1− 1

k2

)
.

� Soluzione. Poiché 1− 1

k2
=
k2 − 1

k2
=

(k − 1)(k + 1)

k2
, si ha

n∏
k=2

(
1− 1

k2

)
=

1 · 3
22
· 2 · 4

32
· · · · · (n− 1)(n+ 1)

n2
=

(n− 1)!(n+ 1)!

2(n!)2
=
n+ 1

2n

e pertanto

lim
n→∞

n∏
k=2

(
1− 1

k2

)
=

1

2
lim
n→∞

n+ 1

n
=

1

2
. �
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Esercizio 2.16. Calcolare

lim
n→∞

(
n∏
k=2

k3 − 1

k3 + 1

)
.

� Soluzione. Si ha
k3 − 1

k3 + 1
=

(k − 1)(k2 + k + 1)

(k + 1)(k2 − k + 1)
,

inoltre (k + 1)2 − (k + 1) + 1 = k2 + k + 1 e dunque

n∏
k=2

k3 − 1

k3 + 1
=

(
n∏
k=2

k − 1

k + 1

)(
n∏
k=2

(k + 1)2 − (k + 1) + 1

k2 − k + 1

)
=

=
1 · 2 · · · · · (n− 1)

3 · · · · · (n+ 1)
· 32 − 3 + 1

22 − 2 + 1
· 42 − 4 + 1

32 − 3 + 1
· · · · · (n+ 1)2 − (n+ 1) + 1

n2 − n+ 1
=

=
2(n− 1)![(n+ 1)2 − (n+ 1) + 1]

3(n+ 1)!
=

2(n2 + n+ 1)

3n(n+ 1)
.

Pertanto

lim
n→+∞

(
n∏
k=2

k3 − 1

k3 + 1

)
=

2

3
. �

Esercizio 2.17. Sia a ∈ R, |a| < 1. Calcolare

lim
n→∞

n∑
k=0

ak .

� Soluzione. Dal fatto che

1− an+1 = (1− a)
n∑
k=0

an−k = (1− a)(an + an−1 + · · ·+ a+ 1) = (1− a)
n∑
k=0

ak

segue che
n∑
k=0

ak =
1− an+1

1− a
e siccome |a| < 1, si ha che

lim
n→∞

(
n∑
k=0

ak

)
= lim

n→∞

1− an+1

1− a
=

1

1− a
. �

Si noti che questo fatto permette di dire che la serie

+∞∑
n=0

an

detta serie geometrica di ragione a, converge per |a| < 1 ed ha somma S =
1

1− a
ovvero

(2.2)
+∞∑
n=0

an =
1

1− a
, |a| < 1

mentre diverge per |a| ≥ 1. �
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Esercizio 2.18. Calcolare

lim
n→∞

(
n∑
k=1

1

k(k + 1)

)
.

� Soluzione. Si noti che per ogni k ∈ N\{0} è

1

k(k + 1)
=

1

k
− 1

k + 1

e quindi
n∑
k=1

1

k(k + 1)
= 1− 1

2
+

1

2
− 1

3
+ · · ·+ 1

n
− 1

n+ 1
= 1− 1

n+ 1
,

pertanto

lim
n→∞

(
n∑
k=1

1

k(k + 1)

)
= 1 . �

Si noti che questo fatto permette di dire che la serie
+∞∑
n=1

1

n(n+ 1)

detta serie di Mengoli converge ed ha somma 1.

Esercizio 2.19. Verificare che la serie
+∞∑
n=0

1

n!

converge.

� Soluzione. Poiché lim
n→∞

2n

n!
= 0, segue che per ε = 1 si ha che esiste n1 ∈ N tale che

per n > n1, sia
1

n!
<

1

2n
=

(
1

2

)n
e dal criterio del confronto, poiché la serie

+∞∑
n=0

(
1

2

)n
converge, si ottiene la convergenza della serie proposta. �

La serie convergente

(2.3)
+∞∑
n=0

1

n!

si chiama serie esponenziale e la sua somma si chiama il numero di Nepero che si indica
con e, ovvero

e :=
+∞∑
n=0

1

n!
. �

Esercizio 2.20. Provare che la successione{(
1 +

1

n

)n}
n∈N\{0}
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è strettamente crescente.

� Soluzione. Osserviamo dapprima che(
n+ 1

k

)
=

(n+ 1)n!

k!(n− k + 1)(n− k)!
=

n+ 1

n− k + 1

(
n

k

)
da cui (

n

k

)
=
n+ 1− k
n+ 1

(
n+ 1

k

)
=⇒

(
n

k

)
=

(
1− k

n+ 1

)(
n+ 1

k

)
.

Siccome − 1

n+ 1
> −1, si ha che(

1− 1

n+ 1

)k
Bernoulli

≥ 1− k

n+ 1

e quindi (
n

k

)
≤
(

1− 1

n+ 1

)k (
n+ 1

k

)
ovvero (

n

k

)
≤
(

n

n+ 1

)k (
n+ 1

k

)
cioè (

n+ 1

k

)
≥ (n+ 1)k

nk

(
n

k

)
.

Allora (
1 +

1

n+ 1

)n+1

=
n+1∑
k=0

(
n+ 1

k

)
1

(n+ 1)k
=

=
n∑
k=0

(
n+ 1

k

)
1

(n+ 1)k
+

(
n+ 1

n+ 1

)
1

(n+ 1)n+1
>

>
n∑
k=0

(
n+ 1

k

)
1

(n+ 1)k
≥

≥
n∑
k=0

(n+ 1)k

nk

(
n

k

)
1

(n+ 1)k
=

(
1 +

1

n

)n
cioè an+1 > an. �

Esercizio 2.21. Dimostrare che1

lim
n→∞

(
1 +

1

n

)n
= e .

1E. Giusti, Analisi Matematica I, Bollati Boringhieri, Torino 1988, pp. 76-77



20 Elisabetta Barletta

� Soluzione. Dallo sviluppo del binomio di Newton si ha:(
1 +

1

n

)n
=

n∑
k=0

(
n

k

)(
1

n

)k
= 1 +

n∑
k=1

(
n

k

)(
1

n

)k
= 1 +

n∑
k=1

n!

k!(n− k)!

1

nk
=

= 1 +
n∑
k=1

1

k!

n(n− 1) · · · (n− k + 1)(n− k)!

nk(n− k)!

cioè

(2.4)

(
1 +

1

n

)n
= 1 +

n∑
k=1

1

k!

n(n− 1) · · · (n− k + 1)

nk
.

Se sn è la somma parziale n-esima della serie esponenziale allora e = lim
n→∞

sn. Quindi per

ogni ε > 0 esiste nε ∈ N tale che per ogni m ∈ N, m ≥ nε si ha e− ε < sm < e+ ε.
Dalla (2.4) si ottiene

lim
n→∞

(
1 +

1

n

)n
≥ 1 +

m∑
k=1

1

k!

(
lim
n→∞

n(n− 1) · · · (n− k + 1)

nk

)
=

m∑
k=0

1

k!
= sm > e− ε .

Quindi per ogni ε > 0 è

sup
n

{(
1 +

1

n

)n}
= lim

n→∞

(
1 +

1

n

)n
> e− ε

che, dall’arbitrarietà di ε > 0, dà

sup
n

{(
1 +

1

n

)n}
≥ e ⇐⇒ lim

n→∞

(
1 +

1

n

)n
≥ e .

D’altra parte

n(n− 1) · · · (n− k + 1)

nk
1

k!
≤ 1

k!

per cui dalla (2.4) (
1 +

1

n

)n
≤ 1 +

n∑
k=1

1

k!
=

n∑
k=0

1

k!
= sn .

Pertanto

lim
n→∞

(
1 +

1

n

)n
= sup

n

{(
1 +

1

n

)n}
≤ sup

n
{sn} = e .

Allora

e ≤ lim
n→∞

(
1 +

1

n

)n
≤ e ⇐⇒ lim

n→∞

(
1 +

1

n

)n
= e . �

Esercizio 2.22. Calcolare

lim
n→∞

(
1− 1

n

)n
.
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� Soluzione. Si ha che

1− 1

n
=
n− 1

n
=

1
n

n− 1

=
1

n− 1 + 1

n− 1

=
1

1 +
1

n− 1

,

di conseguenza si scrive(
1− 1

n

)n
=

1(
1 +

1

n− 1

)n−1(
1 +

1

n− 1

)
e tenuto conto dell’osservazione precedente, si ha che

lim
n→∞

(
1− 1

n

)n
=

 lim
n→∞

1(
1 +

1

n− 1

)n−1

 lim
n→∞

1

1 +
1

n− 1

 =
1

e
. �

Esercizio 2.23. Sia r ∈ Q, r > 0. Provare che

lim
n→∞

(
1 +

1

rn

)rn
= e .

� Soluzione. Dal fatto che 0 ≤ [rn] ≤ rn ≤ [rn] + 1, si ha(
1 +

1

[rn] + 1

)[rn]

≤
(

1 +
1

rn

)[rn]

≤
(

1 +
1

rn

)rn
≤

≤
(

1 +
1

rn

)[rn]+1

≤
(

1 +
1

[rn]

)[rn]+1

,

inoltre, poiché [rn] = m ∈ N, si ha che

lim
n→∞

(
1 +

1

[rn] + 1

)[rn]

= lim
m→∞

(
1 +

1

m+ 1

)m
=

= lim
m→∞

(
1 +

1

m+ 1

)m+1

1 +
1

m+ 1

= e ,

e anche

lim
n→∞

(
1 +

1

[rn]

)[rn]+1

= lim
m→∞

(
1 +

1

m

)m(
1 +

1

m

)
= e .

Dal teorema dei due carabinieri, si ha la tesi. �

Esercizio 2.24. Provare che il numero di Nepero e è un numero irrazionale e che 2 <
e < 3.

� Soluzione. Poichè e =
∞∑
n=0

1

n!
, e = lim

n→∞
sn = sup

n∈N
{sn}, sn somma parziale n-sima
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della serie esponenziale. Si ha

e ≥ sn =
n∑
k=0

1

k!
= 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!
> 2

Per provare che e è un numero irrazionale, seguiremo la dimostrazione di Fourier.

Per assurdo si supponga che e ∈ Q, i.e. e =
p

q
con p, q ∈ N, p, q ≥ 1 perchè e > 0.

Fissiamo n0 ∈ N, n0 > q ≥ 1: allora n0 ≥ 2 e

n0! = 1 · · · (q − 1)q(q + 1) · · ·n0

per cui
n0!

q
= 1 · · · (q − 1)(q + 1) · · ·n0 = m0 ∈ N .

Inoltre se n > n0 allora sn > sn0 , dunque e ≥ sn > sn0 . Ne segue che

0 < n0! (e− sn0) = n0!

(
p

q
− sn0

)
= p

n0!

q
− n0!

n0∑
k=0

1

k!
=

= pm0 −
n0∑
k=0

n0!

k!
.

dove, poiché 0 ≤ k ≤ n0, è
n0!

k!
= (k + 1) · · ·n0 ∈ N\{0}. Quindi da

pm0 −
n0∑
k=0

n0!

k!
> 0

segue che
n0! (e− sn0) ∈ N e n0! (e− sn0) ≥ 1

Ora per ogni n ∈ N, si ha

sn0+n = sn0 +
n∑
k=1

1

(n0 + k)!
= sn0 + σn , σn =

n∑
k=1

1

(n0 + k)!

σn essendo la somma parziale n-sima della serie a temini positivi
∞∑
n=1

1

(n0 + n)!
.

Allora σn = sn0+n − sn0 , per ogni n ∈ N, perciò

lim
n→∞

σn = lim
n→∞

(sn0+n − sn0) = e− sn0 .

Inoltre

n0!σn = n0!
n∑
k=1

1

(n0 + k)!
=

n∑
k=1

n0!

(n0 + k)!
=

=
n0!

(n0 + 1)!
+

n0!

(n0 + 2)!
+ · · ·+ n0!

(n0 + n)!
=

=
1

n0 + 1
+

1

(n0 + 1)(n0 + 2)
+ · · ·+ 1

(n0 + 1) · · · (n0 + n)
=
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=
n∑
k=1

1

(n0 + 1)(n0 + 2) + · · ·+ (n0 + k)

dove

(n0 + 1)(n0 + 2) · · · (n0 + k)︸ ︷︷ ︸
k−fattori

≥ (n0 + 1)k

perciò

n0!σn ≤
n∑
k=1

(
1

n0 + 1

)k
= τn ,

τn somma parziale n-esima della serie geometrica a termini positivi
∞∑
n=1

(
1

n0 + 1

)n
=
∞∑
n=0

(
1

n0 + 1

)n
− 1

che converge a
1

1− 1

n0 + 1

− 1 =
n0 + 1

n0

− 1 =
1

n0

.

Pertanto τn ≤
1

n0

per cui n0!σn ≤
1

n0

, per ogni n ∈ N, che implica

lim
n→∞

(n0!σn) ≤ 1

n0

.

In definitiva

1 ≤ n0! (e− sn0) = n0! lim
n→∞

σn = lim
n→∞

(n0!σn) ≤ 1

n0

≤ 1

2

che è assurdo. Di conseguenza e ∈ R\Q.
Abbiamo già visto che e > 2. Proveremo che e < 3. Siccome per k ≥ 1,

k! = 1 · 2 · 3 · · · k = 2 · 3 · · · k︸ ︷︷ ︸
(k−1)−fattori

≥ 2k−1

si ha

sn < sn+1 =
n+1∑
k=0

1

k!
= 1 +

n+1∑
k=1

1

k!
≤ 1 +

n+1∑
k=1

(
1

2

)k−1
=

=
k−1=h

1 +
n∑
h=0

(
1

2

)h
= 1 + σn

per σn somma parziale n-sima della serie geometrica a termini positivi
∞∑
n=0

(
1

2

)n
che ha

somma σ =
1

1− 1

2

= 2. Allora

e = sup
n∈N
{sn} ≤ sup

n∈N
{1 + σn} = 1 + sup

n∈N
{σn} = 1 + 2 = 3

cioè risulterebbe e ≤ 3, ma essendo e /∈ Q, si ha e < 3. �
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Esercizio 2.25. Calcolare i seguenti limiti di successioni

(1) lim
n→∞

sinn− cosn2

n2 − n+ 6
, (2) lim

n→∞
log

(
1 +

1

n

)n
.

� Soluzione di (1). Poiché∣∣∣∣sinn− cosn2

n2 − n+ 6

∣∣∣∣ ≤ | sinn|+ | cosn2|
n2 − n+ 6

≤ 2

n2 − n+ 6

e lim
n→∞

1

n2 − n+ 6
= 0 segue che∣∣∣∣sinn− cosn2

n2 − n+ 6

∣∣∣∣ ≤ 2

n2 − n+ 6
< ε

per n ∈ N, n > nε, per un certo nε ∈ N. Dunque

lim
n→∞

sinn− cosn2

n2 − n+ 6
= 0 .

Soluzione di (2). Poiché lim
n→∞

(
1 +

1

n

)n
= e allora

lim
n→∞

log

(
1 +

1

n

)n
= log e = 1 . �

Esercizio 2.26. Calcolare i seguenti limiti di successioni

(1) lim
n→∞

(2n)n

n!
, (2) lim

n→∞

√
n+ 1√

3− n
√
n
.

� Soluzione di (1). Abbiamo

lim
n→∞

(2n)n

n!
= ( lim

n→∞
2n)

(
lim
n→∞

nn

n!

)
= +∞ .

Soluzione di (2). Poiché lim
n→∞

n
√
n = 1 e lim

n→∞

√
n = +∞ allora

lim
n→∞

√
n+ 1√

3− n
√
n

= +∞ . �

Esercizio 2.27.

(1) lim
n→∞

n
√
n+ 2√

3− n
√
n

, (2) lim
n→∞

√
n− 4√

2−
√

2n
.

� Soluzione di (1). Poiché lim
n→∞

n
√
n = 1 allora

lim
n→∞

n
√
n+ 2√

3− n
√
n

=
3√

3− 1
.
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Soluzione di (2). Il limite si presenta nella forma indeterminata “
∞
∞

”. Proponiamo

due diversi modi per risolverlo. Per via algebrica:

lim
n→∞

√
n− 4√

2−
√

2n
=

√
2

2
lim
n→∞

√
n

(
1− 4√

n

)
√
n

(
1√
n
− 1

) =

√
2

2
lim
n→∞

1− 4√
n

1√
n
− 1

= −
√

2

2

perché lim
n→∞

1√
n

= 0. In altro modo notando che sia il numeratore che il denominatore

sono infiniti di ordine
1

2
, si ottiene che il limite è il rapporto dei coefficienti di

√
n, cioè

lim
n→∞

√
n− 4√

2−
√

2n
= −
√

2

2
. �

Esercizio 2.28. Calcolare i seguenti limiti

(1) lim
n→∞

n1/4 + n1/5 + 2

n2/3 − n1/3 + 3
, (2) lim

n→∞

(
1

2
+

1

2n

)n
.

� Soluzione di (1). Il limite si presenta nella forma indeterminata “
∞
∞

”. Anche in

questo caso mostriamo due diversi modi per risolverlo. Per via algebrica si ha

lim
n→∞

n1/4 + n1/5 + 2

n2/3 − n1/3 + 3
= lim

n→∞

n1/4

(
1 +

1

n1/20
+

2

n1/4

)
n2/3

(
1− 1

n1/3
+

1

n2/3

) =

=

(
lim
n→∞

1√
n

) lim
n→∞

1 +
1

n1/20
+

2

n1/4

1− 1

n1/3
+

3

n2/3

 = 0 · 1 = 0 .

In altro modo, tenuto conto che il numeratore è un infinito di ordine
1

4
, il denominatore

è un infinito di ordine
2

3
e che

2

3
>

1

4
, è immediato che

lim
n→∞

n1/4 + n1/5 + 2

n2/3 − n1/3 + 3
= 0 .

Soluzione di (2). Abbiamo

lim
n→∞

(
1

2
+

1

2n

)n
= lim

n→∞

(
1

2

)n(
1 +

1

n

)n
=

=

(
lim
n→∞

(
1

2

)n)(
lim
n→∞

(
1 +

1

n

)n)
= 0 · e = 0 . �
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Esercizio 2.29. Calcolare i limiti

(1) lim
n→∞

(
1− 1

3n

)2n

, (2) lim
n→∞

(
2 +

1

n

)n
.

� Soluzione di (1). Si ha

lim
n→∞

(
1− 1

3n

)2n

= lim
n→∞

(
1− 1

3n

)2
3
·3n

= lim
n→∞

((
1− 1

3n

)3n
)2/3

= e−2/3 .

Soluzione di (2). Anche qui si ha

lim
n→∞

(
2 +

1

n

)n
= lim

n→∞
2n
(

1 +
1

2n

)2n/2

=

= ( lim
n→∞

2n)

 lim
n→∞

((
1 +

1

2n

)2n
)1/2

 = +∞

perché

lim
n→∞

2n = +∞ e lim
n→∞

((
1 +

1

2n

)2n
)1/2

=
√
e . �

Esercizio 2.30. Calcolare i seguenti limiti

(1) lim
n→∞

(
1

3
+

1

5n

)n
, (2) lim

n→∞

(
1 +

1

an

)n
, a ∈ Z .

� Soluzione di (1). Abbiamo

lim
n→∞

(
1

3
+

1

5n

)n
= lim

n→∞

(
1

3

)n1 +
1

5

3
n


3
5
· 5
3
n

=

=

(
lim
n→∞

(
1

3

)n) lim
n→∞


1 +

1
5

3
n


5
3
n


3/5
 = 0 · e3/5 = 0 .

Soluzione di (2). Abbiamo

lim
n→∞

(
1 +

1

an

)n
= lim

n→∞

((
1 +

1

an

)an)1/a

= e1/a . �

Esercizio 2.31. Provare che

lim
n→∞

nn

(n!)2
= 0 .
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� Soluzione. Posto an =
nn

n!2
per n 6= 0, si ha che

an+1

an
=

(n+ 1)n+1

(n+ 1)!2
(n!)2

nn
=

(
n+ 1

n

)n
n+ 1

(n+ 1)2
=

(
1 +

1

n

)n
1

n+ 1
≤ e

n+ 1
< 1

per n ≥ [e− 1] + 1 = 2; per n = 1 si ha a1 = 1, a2 =
22

22
= 1 da cui a1 ≤ a2. Pertanto la

successione {an}n∈N è decrescente e quindi lim
n→∞

an = inf
n∈N
{an}. Siccome an ≥ 0 per ogni

n ∈ N, è inf
n∈N
{an} ≥ 0 per cui lim

n→∞
an ≥ 0.

Sia ` = lim
n→∞

an, allora

0 ≤ an+1 ≤ an
e

n+ 1
e passando al limite per n→∞ si ha

0 ≤ ` ≤ ` ·0 = 0 ovvero ` = 0 . �

Definizione 2.1. Una successione si dice regolare se ammette limite (finito o infinito).

Esercizio 2.32. Sia {an}n∈N una successione regolare. Dimostrare che anche la

successione {a1 + · · ·+ an
n

}n≥1 è regolare e che

lim
n→∞

a1 + · · ·+ an
n

= lim
n→∞

an .

� Soluzione. (I) Supponiamo che lim
n→∞

an = `; posto bn = an − ` si ha che lim
n→∞

bn = 0 e

poiché

lim
n→∞

b1 + · · ·+ bn
n

= lim
n→∞

a1 + · · ·+ an − n`
n

= lim
n→∞

(
a1 + · · ·+ an

n
− `
)

basta provare che lim
n→∞

b1 + · · ·+ bn
n

= 0. Per ogni ε > 0 esiste n′ε ∈ N tale che per

n > n′ε sia |bn| <
ε

2
; inoltre {bn}n∈N è limitata per cui esiste L > 0 tale che |bn| ≤ L

per ogni n ∈ N. Allora∣∣∣∣b1 + · · ·+ bn
n

∣∣∣∣ ≤ |b1|n + · · ·+
|bn′ε|
n

+
|bn′ε+1|+ · · ·+ |bn|

n
<

<
n′ε
n
L+

n− n′ε
n

ε

2
<
n′ε
n
L+

ε

2
< ε

per
n′ε
n
L <

ε

2
, i. e. per n > nε = [

2Ln′ε
ε

] + 1.

(II) Se invece lim
n→∞

an = +∞ allora per ogni M > 0 esiste n′M ∈ N tale che per

n > n′M sia an > M . Pertanto è anche an > M per n > 2n′M e

a1 + · · ·+ an
n

=
a1 + · · ·+ an′M

n
+
an′M+1 + · · ·+ an

n
>

> −
|a1 + · · ·+ an′M |

n
+
n− n′M

n
M .
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Sia LM = |a1 + · · ·+ an′M |. Poiché lim
n→∞

LM
n

= 0, per ogni ε > 0 esiste nε ∈ N tale che per

n > nε sia
LM
n

< ε. Sia nM = max{n′M , nε}, allora per n > 2nM è

a1 + · · ·+ an
n

> −ε+
n− nM

n
M .

Ora
n− nM

n
=

2n− 2nM
2n

=
n+ (n− 2nM)

2n
>

n

2n
=

1

2
.

Per K > 0 prendiamo M = 4K, ε = K e nK = 2nM : avremo che per n > nK è

a1 + · · ·+ an
n

> −K +
1

2
4K = K

ovvero

lim
n→∞

a1 + · · ·+ an
n

= +∞ = lim
n→∞

an .

(III) Se lim
n→∞

an = −∞ allora lim
n→∞

(−an) = +∞, dunque

lim
n→∞

a1 + · · ·+ an
n

= − lim
n→∞

(−a1) + · · ·+ (−an)

n
=

= − lim
n→∞

(−an) = lim
n→∞

an = −∞ . �

Il numero
a1 + · · ·+ an

n
si chiama media aritmetica dei numeri a1, · · · , an.

Esercizio 2.33. Sia {an}n∈N una successione di numeri non negativi regolare.
Dimostrare che anche la successione { n

√
a1 · · · an}n≥1 è regolare e che

lim
n→∞

n
√
a1 · · · an = lim

n→∞
an .

� Soluzione. (I) Se lim
n→∞

an = 0, per ogni ε > 0 esiste n′ε ∈ N tale che per n > n′ε si abbia

|an| = an <
2

3
ε, cosicché

n
√
a1 · · · an <

2

3
ε n

√
3n′ε a1 · · · an′ε

(2ε)n′ε
.

Poiché

lim
n→∞

n

√
3n′ε a1 · · · an′ε

(2ε)nε
= 1

allora esisterà n′′ ∈ N tale che per n > n′′ si abbia∣∣∣∣∣ n
√

3n′ε a1 · · · an′ε
(2ε)nε

− 1

∣∣∣∣∣ < 1

2

cosicché per n > n′′ è

n

√
3n′ε a1 · · · an′ε

(2ε)nε
<

3

2
.
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Sia nε = max{n′ε, n′′}, allora per n > nε si ha

−ε < 0 ≤ n
√
a1 · · · an <

2

3
ε n

√
3n′ε a1 · · · an′ε

(2ε)n′ε
< ε

e quindi
lim
n→∞

n
√
a1 · · · an = 0 = lim

n→∞
an .

(II) Se lim
n→∞

an = ` 6= 0 allora posto bn =
an
`

si ha lim
n→∞

bn = 1 e

lim
n→∞

n
√
b1 · · · bn = lim

n→∞

n
√
a1 · · · an
`

.

Se proviamo che

lim
n→∞

n
√
b1 · · · bn = lim

n→∞
bn = 1

allora

lim
n→∞

n
√
a1 · · · an
`

= 1 ovvero lim
n→∞

n
√
a1 · · · an = ` = lim

n→∞
an .

Poiché lim
n→∞

bn = 1, per ogni σ > 0 esiste n′σ ∈ N tale che per n > n′σ sia |bn − 1| < σ i.e.

1− σ < bn < 1 + σ

da cui
(1− σ)n ≤ (1− σ)n−n

′
σ < bn′σ+1 · · · bn < (1 + σ)n−n

′
σ ≤ (1 + σ)n

e quindi

1− σ < n
√
bn′σ+1 · · · bn < 1 + σ .

D’altra parte lim
n→∞

n
√
b1 · · · bn′σ = 1, pertanto in corrispondenza a σ esiste n′′σ ∈ N

tale che per n > n′′σ sia

1− σ < n
√
b1 · · · bn′σ < 1 + σ .

Quindi posto nσ = max{n′σ, n′′σ}, per n > nσ si ha

(1− σ)2 < n
√
b1 · · · bn < (1 + σ)2

dove (1− σ)2 = 1− 2σ + σ2 > 1− 2σ > 1− 3σ.

Sia 0 < ε < 3 e si prenda σ =
ε

3
; allora (1− σ)2 > 1− ε mentre (poiché 0 < σ < 1)

(1 + σ)2 = 1 + 2σ + σ2 < 1 + 3σ = 1 + ε. Di conseguenza per n > nσ ≡ nε si ha

1− ε < n
√
b1 · · · bn < 1 + ε ovvero

∣∣∣ n√b0 · · · bn − 1
∣∣∣ < ε .

Se invece ε ≥ 3, si prenda σ =

√
ε

3
≥ 1 cosicché 1− ε = 1− 3σ2 ≤ 1− 3σ mentre

(1 + σ)2 = 1 + 2σ + σ2 < 1 + 3σ2 = 1 + ε da cui per n > nε si ha

1− ε < n
√
b1 · · · bn < 1 + ε ovvero

∣∣∣ n√b1 · · · bn − 1
∣∣∣ < ε .

In ogni caso

lim
n→∞

n
√
b1 · · · bn = 1 .
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(III) Se lim
n→∞

an = +∞ allora per ogni K > 0 esiste n′K ∈ N per cui an > 2K per

n > n′K , quindi

n
√
a1 · · · an > n

√
a1 · · · anK ·

n
√

(2K)n−nK = n

√
a1 · · · anK
(2K)nK

· 2K

dove lim
n→∞

n

√
a1 · · · anK
(2K)nK

= 1. Quindi per ogni ε > 0 esiste nε > 0 tale che per n > nε si

abbia

1− ε < n

√
a1 · · · anK
(2K)nK

< 1 + ε .

In particolare per ε =
1

2
esiste n′′ ∈ N tale che per n > n′′ sia

n

√
a1 · · · anK )

(2K)nK
>

1

2
.

Si prenda nK = max{n′K , n′′}, allora per n > nK si ha

n
√
a1 · · · an >

2K

2
ovvero lim

n→∞
n
√
a1 · · · an = +∞ = lim

n→∞
an . �

Il numero
n
√
a1 · · · an

è detto media geometrica dei numeri a1, · · · , an.

Esercizio 2.34. Si provi che

n
√
a1 · · · an ≤

a1 + · · ·+ an
n

.

Esercizio 2.35. Sia {an}n∈N una successione di numeri positivi. Dimostrare che

lim
n→∞

n
√
an = lim

n→∞

an+1

an
.

� Soluzione. Si consideri la successione (di numeri positivi) {bn}n∈N cos̀ı definita:

b0 = a0 , bn =
an
an−1

per n ≥ 1 .

Allora
lim
n→∞

n
√
b0 · · · bn = lim

n→∞
bn = lim

n→∞
bn+1

dove

lim
n→∞

n
√
b0 · · · bn = lim

n→∞
n

√
a0
a1
a0

a2
a1
· · · an

an−1
= lim

n→∞
n
√
an

e
lim
n→∞

bn+1 = lim
n→∞

an+1

an
.

Dunque

lim
n→∞

n
√
an = lim

n→∞

an+1

an
. �

Come applicazione dell’esercizio precedente svolgiamo il seguente
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Esercizio 2.36. Calcolare

lim
n→∞

n
√
n!

n
.

� Soluzione. Notiamo che
n
√
n!

n
=

n

√
n!

nn
,

quindi applicando il risultato dell’esercizio precedente si ha

lim
n→∞

n
√
n!

n
= lim

n→∞

(n+ 1)!

(n+ 1)n+1

nn

n!
= lim

n→∞

(n+ 1)n!

(n+ 1)n(n+ 1)

nn

n!
=

= lim
n→∞

(
n

n+ 1

)n
= lim

n→∞

(
n+ 1− 1

n+ 1

)n
=

= lim
n→∞

(
1− 1

n+ 1

)n+1(
1− 1

n+ 1

)−1
=

1

e
. �

Esercizio 2.37. Siano h, k ∈ N, 1 ≤ h ≤ k. Dimostrare che

lim
n→∞

n

√(
kn

hn

)
=

kk

hh(k − h)k−h

� Soluzione. Posto

an =

(
kn

hn

)
dall’Esercizio 2.33 si ha

lim
n→∞

n

√(
kn

hn

)
= lim

n→∞

(
k(n+ 1)

h(n+ 1)

)
(
kn

hn

) = lim
n→∞

(
kn+ k

hn+ h

)
(
kn

hn

)
dove (

kn+ k

hn+ h

)
=

(kn+ k)!

(hn+ h)! [(k − h)n+ (k − h)]!

=
(kn)! (kn+ 1) · · · (kn+ k)

(hn)! (hn+ 1) · · · (hn+ h) [(k − h)n]! [(k − h)n+ 1] · · · [(k − h)n+ (k − h)]

Allora (
kn+ k

hn+ h

)
(
kn

hn

) =

(kn)!
k∏
j=1

(kn+ j)

(hn)! [(k − h)n]!
h∏
j=1

(hn+ j)
k−h∏
j=1

[(k − h)n+ j]

×

× (hn)![(k − h)n]!

(kn)!
=
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=

k∏
j=1

(kn+ j)

h∏
j=1

(hn+ j)
k−h∏
j=1

[(k − h)n+ j]

Notiamo che, in quest’ultima frazione, il numeratore è il prodotto di k monomi in n di I
grado e perciò è un polinomio in n di grado k; il denominatore è il prodotto di h monomi
in n di I grado e di k − h monomi in n di I grado, quindi è il prodotto di un polinomio
in n di grado h e di un polinomio in n di grado k − h. Dunque il denominatore è un
polinomio in n di grado k. Osserviamo poi che il coefficiente di nk al numeratore è kk, al
denominatore è hh(k − h)k−h, perciò

lim
n→∞

n

√(
kn

hn

)
= lim

n→∞

(
kn+ k

hn+ h

)
(
kn

hn

) = lim
n→∞

k∏
j=1

(kn+ j)

h∏
j=1

(hn+ j)
k−h∏
j=1

[(k − h)n+ j]

=

=
kk

hh(k − h)k−h
. �

Esercizio 2.38. Dimostrare il seguente criterio

Teorema (Cesàro-Stolz). Sia {bn}n∈N una successione a termini positivi strettamente
crescente e divergente. Allora per ogni successione {an}n∈N si ha

lim
n→∞

an
bn

= lim
n→∞

an+1 − an
bn+1 − bn

.

Esercizio 2.39. Verificare che le seguenti serie convergono e determinarne la somma:

(1)
∞∑
n=1

1

n(n+ a)
, a ∈ N\{0} ,

(2)
∞∑
n=0

1

(n+ a)(n+ b)
, a, b ∈ N\{0}, a 6= b .

� Soluzione di (1). La serie è convergente perché

n(n+ a) > n2 =⇒ 1

n(n+ a)
<

1

n2

e dal criterio del confronto segue quanto detto. Si decompone

1

n(n+ a)
=

1

a

(
1

n
− 1

n+ a

)
cosicché la somma parziale n-sima è

sn =
n∑
k=1

1

k(k + a)
=

1

a

n∑
k=1

(
1

k
− 1

k + a

)
=
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=
1

a

[
n∑
k=1

(
1

k
− 1

k + 1
+

1

k + 1
− 1

k + 2
+

1

k + 2
−

− · · · − 1

k + a− 1
+

1

k + a− 1
− 1

k + a

)]
=

=
1

a

[
n∑
k=1

(
1

k
− 1

k + 1

)
+

n∑
k=1

(
1

k + 1
− 1

k + 2

)
+

+ · · ·+
n∑
k=1

(
1

k + a− 1
− 1

k + a

)]
=

=
1

a

(
a∑
k=1

1

k
−

a∑
k=1

1

n+ k

)
.

Allora

lim
n→∞

sn =
1

a
lim
n→∞

(
a∑
k=1

1

k
−

a∑
k=1

1

n+ k

)
che dà la somma della serie

S =
1

a

a∑
k=1

1

k
.

Soluzione di (2). Come in (1), la serie è convergente perché

(n+ a)(n+ b) ≥ n2 =⇒ 1

(n+ a)(n+ b)
≤ 1

n2
.

Per calcolarne la somma si decompone

1

(n+ a)(n+ b)
=

A

n+ a
+

B

n+ b

determinando A,B ∈ R in modo che l’identità sia soddisfatta. Si ricava che A =
1

b− a
=

−B e quindi
1

(n+ a)(n+ b)
=

1

b− a

(
1

n+ a
− 1

n+ b

)
.

Siamo allora ricondotti a trovare la somma della serie

1

b− a
∑
n≥0

(
1

n+ a
− 1

n+ b

)
.

Senza perdere di generalità, si può supporre che sia b > a; sia sn la somma parziale n-sima

della serie
∑
n≥0

(
1

n+ a
− 1

n+ b

)
e poniamo c = b− a ∈ N. Allora

sn =
n∑
k=0

(
1

k + a
− 1

k + b

)
=

n∑
k=0

(
1

k + a
− 1

k + a+ c

)
=

=
n∑
k=0

(
1

k + a
− 1

k + a+ 1
+

1

k + a+ 1
− 1

k + a+ 2
+

1

k + a+ 2
−
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− · · · − 1

k + a+ c− 1
+

1

k + a+ c− 1
− 1

k + a+ c

)
=

=
n∑
k=0

(
1

k + a
− 1

k + a+ 1

)
+

n∑
k=0

(
1

k + a+ 1
− 1

k + a+ 2

)
+

+ · · ·+
n∑
k=0

(
1

k + a+ c− 1
− 1

k + a+ c

)
=

=

(
1

a
− 1

n+ a+ 1

)
+

(
1

a+ 1
− 1

n+ a+ 2

)
+

+ · · ·+
(

1

a+ c− 1
− 1

n+ a+ c

)
=

=

(
1

a
+

1

a+ 1
· · ·+ 1

a+ c− 1

)
−

−
(

1

n+ a+ 1
+

1

n+ a+ 2
+ · · ·+ 1

n+ a+ c

)
e da questo segue che la somma della serie∑

n≥0

1

(n+ a)(n+ b)

è

S =
1

b− a
lim
n→∞

sn =
1

b− a

c−1∑
k=0

1

a+ k
=

1

b− a

b−a−1∑
k=0

1

a+ k

ovvero
(2.5) ∑

n≥0

1

(n+ a)(n+ b)
=

1

b− a

b−a−1∑
k=0

1

a+ k
. �

Esercizio 2.40. Verificare l’eventuale convergenza delle serie

(1)
∑
n≥1

e−n
2

n
, (2)

∑
n≥1

e−n

np
, p ∈ N\{0} .

� Soluzione di (1). Poiché n ≥ 1, si ha:

1

nen2 ≤
1

en2 =
1

(en)n
.

Ora en ≥ e per n ≥ 1, dunque
1

nen2 ≤
(

1

e

)n
e siccome la serie geometrica

∑
n≥0

(
1

e

)n
converge, dal criterio del confronto converge anche

la serie proposta.
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Soluzione di (2). Il termine generale della serie è an =
1

npen
, dunque la serie è a termini

positivi e

lim
n→∞

1

npen
= 0

quindi ancora non si può dire niente sul comportamento della serie. Si ha

an+1

an
=

npen

(n+ 1)pen+1
=

1

e

np

np
(

1 +
1

n

)p =
1

e

1(
1 +

1

n

)p
dove (

1 +
1

n

)p
> 1

quindi
an+1

an
<

1

e
< 1

per ogni n ∈ N, n ≥ 1 e dal criterio del rapporto, la serie converge. �

Esercizio 2.41. Verificare l’eventuale convergenza delle seguenti serie numeriche

(1)
+∞∑
n=0

3n + 4n

5n
, (2)

+∞∑
n=0

3n

n!
.

� Soluzione di (1). La serie è a termini positivi e il termine generale è an =
3n + 4n

5n
; si

ha

lim
n→∞

3n + 4n

5n
= lim

n→∞

(
4

5

)n [(
3

4

)n
+ 1

]
= 0

che non permette di concludere nulla sul comportamento della serie. Tuttavia(
3

4

)n
≤ 1

per ogni intero n ≥ 1, dunque

an =

(
4

5

)n [(
3

4

)n
+ 1

]
≤ 2

(
4

5

)n
.

Poiché la serie geometrica
∑
n≥0

(
4

5

)n
converge, dal criterio del confronto, converge anche

la serie data.

Soluzione di (2). Qui an =
3n

n!
quindi la serie è a termini positivi con

lim
n→∞

3n

n!
= 0

che non permette di concludere sul comportamento della serie. Ora

an+1

an
=

3n+1

(n+ 1)!
· n!

3n
=

3

n+ 1
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per n ∈ N. È sempre possibile ad esempio avere

3

n+ 1
≤ 1

2

se n ≥ 5. Pertanto per n ≥ 5 si ha

an+1

an
≤ 1

2
< 1

che, dal criterio del rapporto, dà la convergenza della serie data. �

Esercizio 2.42. Studiare il comportamento delle seguenti serie delle seguenti serie nu-
meriche

(1)
+∞∑
n=0

3−n
2

, (2)
+∞∑
n=1

n4

4n
.

� Soluzione di (1). Il fatto che lim
n→∞

3−n
2

= 0 non ci permette ancora di concludere niente

sul comportamento della serie. Poiché 3n
2 ≥ 3n allora

3−n
2 ≤

(
1

3

)n
per ogni n ∈ N e siccome la serie geometrica

∞∑
n=0

(
1

3

)n
converge, dal criterio del confronto,

la serie data converge.

Soluzione di (2). Si noti che

lim
n→∞

n4

4n
= 0

dunque ancora non possiamo concludere niente sul comportamento della serie.
Si ha

an+1

an
=

(n+ 1)4

4n+1
· 4n

n4
=

1

4

(
1 +

1

n

)4

e se n ≥ 1 è (
1 +

1

n

)4

< 2

da cui
an+1

an
<

1

2

che prova, dal criterio del rapporto, la convergenza della serie. �

Esercizio 2.43. Verificare l’eventuale divergenza delle seguenti serie numeriche

(1)
+∞∑
n=3

n!

nn
, (2)

+∞∑
n=1

(−1)n

n
.

� Soluzione di (1). Poiché

lim
n→∞

n!

nn
= 0
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ancora non possiamo concludere niente sul comportamento di questa serie. Si ha

an+1

an
=

(n+ 1)!

(n+ 1)n+1
· n

n

n!
=

(
n

n+ 1

)n
=

(
1− 1

n+ 1

)n
dove

lim
n→∞

(
1− 1

n+ 1

)n
= lim

n→∞

(
1− 1

n+ 1

)n+1(
1− 1

n+ 1

)
=

1

e
.

Scelto ε =
1

e
, si ha che esiste nε ∈ N tale che, per n > nε, sia(

1− 1

n+ 1

)n
<

1

e
< 1 ,

dunque, scelto n ≥ nε+1, dal criterio del rapporto, si conclude che la serie data converge.

Soluzione di (2). La successione { 1

n
}n∈N\{0} è decrescente e convergente a 0. Dal criterio

di Leibnitz la serie data converge. �

Esercizio 2.44. Provare se le seguenti serie numeriche convergono

(1)
+∞∑
n=0

(−1)n
n+ 1

n2 + 2
, (2)

+∞∑
n=0

(−1)n
n+ 1

2n− 1
.

� Soluzione di (1). La serie è a segni alterni; si osservi che

lim
n→∞

(−1)n
n+ 1

n2 + 2
= 0

dunque non si può concludere niente sul comportamento della serie. D’altra parte, posto

an =
n+ 1

n2 + 2

si ha a0 =
1

2
, a1 =

2

3
, quindi a0 < a1, mentre si verifica facilmente che an+1 < an per

n ≥ 1. In ogni caso la successione {an}n∈N non è decrescente anche se lim
n→∞

an = 0. Non

possiamo allora usare il criterio di Leibnitz. Tuttavia

+∞∑
n=0

(−1)n
n+ 1

n2 + 2
=

1

2
+

+∞∑
n=1

(−1)n
n+ 1

n2 + 2

dove adesso, per il criterio di Leibnitz, la serie

+∞∑
n=1

(−1)n
n+ 1

n2 + 2

converge. Pertanto la serie data converge.

Soluzione di (2). Anche questa serie è a segni alterni. Qui

lim
n→∞

(−1)n
n+ 1

2n− 1

non esiste, pertanto la serie diverge. �
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Esercizio 2.45. Determinare il comportamento delle seguenti serie numeriche

(1)
∑
n≥0

2√
n+ 5

, (2)
+∞∑
n=0

3

(n+ 1)(n2 + 4)
.

� Soluzione di (1). La serie data è a termini positivi e

lim
n→∞

2√
n+ 5

= lim
n→∞

1√
n

 2

1 +
5√
n

 = 0

quindi non si può ancora concludere niente circa il comportamento della serie. Si osservi

però che per n → ∞ il comportamento della successione { 2√
n+ 5

}n∈N è lo stesso della

successione { 1√
n
}n∈N. Allora

2√
n+ 5

=
1√
n

 2

1 +
5√
n


dove per n ≥ 1

1 +
5√
n
≤ 1 + 5 = 6 ,

di conseguenza
2

1 +
5√
n

≥ 1

3
.

Pertanto per n ≥ 1
2√
n+ 5

≥ 1

3

1√
n

e la serie ∑
n≥1

1√
n

diverge. Dal criterio del confronto la serie data diverge.

Soluzione di (2). La serie data è a termini positivi e

lim
n→∞

3

(n+ 1)(n2 + 4)
= lim

n→∞

1

n3

 3(
1 +

1

n

)(
1 +

4

n2

)
 = 0

quindi il comportamento della successione { 3

(n+ 1)(n2 + 4)
}n∈N è come quello della
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successione { 1

n3
}n≥1. Si ha 1 +

1

n
> 1, 1 +

4

n2
> 1 per n ≥ 1, quindi

3(
1 +

1

n

)(
1 +

4

n2

) < 3 .

Allora per n ≥ 1 è

3

(n+ 1)(n2 + 4)
=

1

n3

 3(
1 +

1

n

)(
1 +

4

n2

)
 <

3

n3

e siccome la serie
∑
n>0

1

n3
converge, converge anche la serie data. �

Esercizio 2.46. Verificare l’eventuale divergenza delle seguenti serie numeriche

(1)
+∞∑
n=1

en
3

n3/2
, (2)

+∞∑
n=0

4

(
n+ 1

n+ 2

)
.

� Soluzione. Per le due serie (entrambe a termini positivi) si ha

lim
n→∞

en
3

n3/2
= +∞ , lim

n→∞
4
n+ 1

n+ 2
= 4

e questo basta per dire che le due serie divergono. �

Esercizio 2.47. Calcolare la somma delle serie

(1)
+∞∑
n=3

1

n!
, (2)

+∞∑
n=0

3

n!
.

� Soluzione. Le serie sono entrambe assimilabili alla serie esponenziale (2.3) e precisa-
mente:

+∞∑
n=3

1

n!
=

+∞∑
n=0

1

n!
−
(

1 + 1 +
1

2

)
= e− 5

2

e
+∞∑
n=0

3

n!
= 3

+∞∑
n=0

1

n!
= 3e . �

Esercizio 2.48. Determinare, se possibile, la somma delle seguenti serie

(1)
+∞∑
n=2

(−1)n
(

2

3

)n
, (2)

+∞∑
n=3

1

2(n+ 1)(n+ 3)
.

� Soluzione di (1). La serie è assimilabile alla serie geometrica

∞∑
n=0

(
−2

3

)n
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che converge alla somma S =
3

5
(cfr. (2.2)). Allora

+∞∑
n=2

(−1)n
(

2

3

)n
=
∞∑
n=0

(
−2

3

)n
−
(

1− 2

3

)
=

4

15
.

Soluzione di (2). La serie è assimilabile alla serie

+∞∑
n=0

1

(n+ 1)(n+ 3)

perché si scrive

+∞∑
n=3

1

2(n+ 1)(n+ 3)
=

1

2

(
+∞∑
n=0

1

(n+ 1)(n+ 3)
− 1

3
− 1

8
− 1

15

)
=

=
1

2

(
+∞∑
n=0

1

(n+ 1)(n+ 3)
− 21

40

)
.

Dall’Esercizio 2.39, la serie
+∞∑
n=0

1

(n+ 1)(n+ 3)
converge e ha somma (cfr. (2.5))

S =
1

2

1∑
k=0

1

k + 1
=

1

2

(
1 +

1

2

)
=

3

4
.

Allora
+∞∑
n=3

1

2(n+ 1)(n+ 3)
=

1

2

(
3

4
− 21

40

)
=

9

80
.

• Si osservi che l’esercizio può essere risolto anche nel modo seguente.
Posto m = n− 3, la serie si riscrive come

∞∑
m=0

1

2(m+ 4)(m+ 6)
=

1

2

∞∑
m=0

1

(m+ 4)(m+ 6)

che dunque ha somma

S =
1

2

(
1

2

1∑
k=0

1

4 + k

)
=

1

4

(
1

4
+

1

5

)
=

9

80
. �

Per α ∈ R e k ∈ N il fattore binomiale α su k è il numero reale non nullo

(
α

k

)
cos̀ı

definito:

per k = 0,

(
α

0

)
:= 1

per k ≥ 1,

(
α

k

)
:=

α(α− 1)(α− 2) · · · (α− k + 1)

k!
.
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Esercizio 2.49. Sia a ∈ R; provare che la serie
∞∑
n=0

(
α

n

)
an

è assolutamente convergente per |a| < 1.

� Soluzione. Posto bn =

∣∣∣∣(αn
)
an
∣∣∣∣ dobbiamo provare che la serie a termini non negativi

∞∑
n=0

bn converge per |a| < 1. Se a = 0, la serie è la serie nulla e dunque convergente. Sia

dunque a 6= 0, cosicché la serie
∞∑
n=0

bn è a termini positivi e

bn+1

bn
=

∣∣∣∣( α

n+ 1

)
an+1

∣∣∣∣∣∣∣∣(αn
)
an
∣∣∣∣ =

∣∣∣∣∣α(α− 1) · · ·
(
α− (n+ 1) + 2

)(
α− (n+ 1) + 1

)
(n+ 1)!

an+1

∣∣∣∣∣∣∣∣∣α(α− 1) · · · (α− n+ 1)

n!
an
∣∣∣∣ =

=
|α(α− 1) · · · (α− n+ 1)(α− n)|
|α(α− 1) · · · (α− n+ 1)|

n!

(n+ 1)!
|a| = |α− n|

n+ 1
|a| .

Perciò

lim
n→∞

bn+1

bn
= lim

n→∞

|α− n|
n+ 1

|a| = |a|

e se |a| < 1, la serie
∞∑
n=0

bn converge. �

Esercizio 2.50. Sia {an}n∈N una successione positiva decrescente. Dimostrare che le

serie
∞∑
n=0

an,
∞∑
n=0

2n a2n hanno lo stesso comportamento.

� Soluzione. Poiché
∞∑
n=0

an = a0 +
∞∑
n=1

an, basta provare che le serie
∞∑
n=1

an ,
∞∑
n=0

2n a2n

hanno lo stesso carattere. Entrambe queste serie sono a termini positivi quindi le succes-
sioni delle loro somme parziali

sn =
n∑
k=1

ak , σn =
n∑
k=0

2k a2k

sono strettamente crescenti. Perciò

lim
n→∞

sn = sup
n≥1
{sn} , lim

n→∞
σn = sup

n≥0
{σn} .

Proviamo, per induzione su n ≥ 0, che

(2.6) s2n+1−1 ≤ σn .

Infatti per n = 0
s2−1 = s1 = a1 = σ0 .
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Ammessa vera la stima (2.6) per n, proviamola per n+ 1. Si ha

s2n+2−1 = s2n+1−1 + a2n+1 + a2n+1+1 + · · ·+ a2n+2−1︸ ︷︷ ︸
2n+1 addendi

≤ s2n+1−1 + 2n+1 a2n+1 ≤

≤ σn + 2n+1 a2n+1 = σn+1 .

Dal principio di induzione matematica, la disuguaglianza (2.6) è dunque vera per ogni
n ≥ 0. Siccome 2n > n per ogni n ≥ 1, si ha n < 2n+1 − 1 per cui sn < s2n+1−1 e la (2.6)
dà

(2.7) sn < σn , n ≥ 1 .

Proviamo ora, per induzione su n ≥ 1,

(2.8) σn < 2 s2n .

Infatti, poiché a2 ≤ a1, per n = 1 si ha

σ1 = a1 + 2 a2 = a1 + a2 + a2 ≤ 2 a1 + a2 < 2 a1 + 2 a2 = 2 s2 .

Ammessa vera σn < 2 s2n , per n+ 1 si ha

σn+1 =
n+1∑
k=0

2k a2k = σn + 2n+1 a2n+1 < 2 s2n + 2n+1 a2n+1 =

= 2 s2n + 2n+1a2n+1 − 2 a2n+1 + 2 a2n+1 = 2 s2n + 2(2n − 1)a2n+1 + 2 a2n+1 .

Per 1 ≤ k ≤ 2n − 1 è

2n + 1 ≤ 2n + k ≤ 2n + 2n − 1 = 2 2n − 1 = 2n+1 − 1 < 2n+1 .

Perciò
a2n+1 ≤ a2n+k , 1 ≤ k ≤ 2n − 1 .

Pertanto

2(2n − 1)a2n+1 = (2n − 1)(a2n+1 + a2n+1) = (a2n+1 + a2n+1) + · · ·+ (a2n+1 + a2n+1)︸ ︷︷ ︸
(2n−1) addendi

≤

≤ 2 a2n+1 + 2 a2n+2 + · · ·+ 2 a2n+2n−1 = 2(a2n+1 + a2n+2 + · · ·+ a2n+1−1) .

Ne segue che

σn+1 < 2 s2n + 2(a2n+1 + a2n+2 + · · ·+ a2n+1−1) + 2a2n+1 =

= 2(s2n + a2n+1 + a2n+2 + · · ·+ a2n+1) = 2 s2n+1 .

Possiamo allora affermare, dal principio di induzione matematica, che la (2.8) vale per
ogni n ≥ 1. In definitiva, dalle (2.7) e (2.8), si ha

(2.9) sn < σn < 2 s2n , n ≥ 1 .

Se la serie
∑
n≥1

an converge allora sup
n≥1
{sn} è finito, di conseguenza è finito anche2 sup

n≥1
{s2n}

il quale, dalla (2.9), implica che sup
n≥1
{σn} è finito. Pertanto anche sup

n≥0
{σn} è finito

provando cos̀ı la convergenza della serie
∑
n≥0

2n a2n . Se invece la serie
∑
n≥1

an diverge

2{s2n}n≥0 è una sottosuccessione di {sn}n≥1.
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allora sup
n≥1
{sn} = +∞. Pertanto, dalla (2.9), anche sup

n≥1
{σn} = +∞ da cui risulta

sup
n≥0
{σn} = +∞. Perciò la serie

∑
n≥0

2n a2n diverge.

Viceversa se la serie
∑
n≥0

2n a2n converge allora sup
n≥0
{σn} è finito, di conseguenza è finito

anche sup
n≥1
{σn}. Dalla (2.9) risulta finito sup

n≥1
{sn} provando cos̀ı la convergenza della

serie
∑
n≥1

an. Se invece la serie
∑
n≥0

2n a2n diverge allora sup
n≥0
{σn} = +∞ da cui segue

che sup
n≥1
{σn} = +∞ e, per la (2.9), è sup

n≥1
{s2n} = +∞. Se in tal caso la serie

∑
n≥1

an

convergesse, allora sup
n≥1
{sn} sarebbe finito per cui sarebbe finito anche sup

n≥1
{s2n}. Poiché

questo è falso, risulta che la serie
∑
n≥1

an diverge. �

Esercizio 2.51. Per p, q > 0 si consideri la serie

∞∑
n=2

1

np logq n
.

Provare che

se p = 1 allora la serie converge per q > 1 e diverge per 0 < q ≤ 1,
se 0 < p < 1 allora la serie diverge,
se p > 1 allora la serie converge.

� Soluzione. Per p = 1 la serie è

∞∑
n=2

1

n logq n

e, dalla Proposizione dell’Esercizio 2.50, essa ha lo stesso carattere della serie

∞∑
n=2

2n
1

2n logq 2n
=
∞∑
n=2

1

(log 2n)q
=
∞∑
n=2

1

nq logq 2
=

1

logq 2

∞∑
n=2

1

nq

la quale converge per q > 1 e diverge per 0 < q ≤ 1.

Per 0 < p < 1 è 1− p > 0 per cui

lim
n→∞

logq n

n1−p = 0 .

Perciò per ogni ε > 0 esiste nε ∈ N tale che per n ≥ nε si abbia

∣∣∣∣ logq n

n1−p

∣∣∣∣ =
logq n

n1−p < ε.

Scelto allora ε = 1, esiste n1 ∈ N tale che, per n ≥ n1, si abbia

logq n < n1−p

da cui
1

np logq n
>

1

np n1−p =
1

n
per n ≥ n1 .
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Dal criterio del confronto segue che la serie
∞∑
n=2

1

np logq n
diverge per 0 < p < 1 per ogni

q > 0.

Per p > 1, poiché log n ≥ log 2, per ogni q > 0 si ha

1

np logq n
≤ 1

logq 2

1

np

e poiché in tal caso la serie
∑
n≥1

1

np
converge, si conclude che la serie

∞∑
n=2

1

np logq n
converge

per p > 1 per ogni q > 0. �
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3. Esercizi sui limiti di una funzione di una variabile reale

Esercizio 3.1. Calcolare i seguenti limiti:

(1) lim
x→+∞

x2

cos
1

x

, (2) lim
x→π

2

x tanx .

� Soluzione di (1). Cambiando variabile e ponendo y =
1

x
è y → 0+, dunque

lim
x→+∞

x2

cos
1

x

= lim
y→0+

1

y2
· 1

cos y
= +∞ .

Soluzione di (2). Qui dobbiamo distinguere i due limiti laterali

lim
x→π

2
−
x tanx e lim

x→π
2
+
x tanx

avendo quindi

lim
x→π

2
−
x =

π

2
, lim

x→π
2
−

tanx = +∞ da cui lim
x→π

2
−
x tanx = +∞ ,

lim
x→π

2
+
x =

π

2
, lim

x→π
2
+

tanx = −∞ da cui lim
x→π

2
−
x tanx = −∞ . �

Esercizio 3.2. Calcolare i seguenti limiti:

(1) lim
x→0+

(log x)x−3 , (2) lim
x→0+

(
1

x+ 2

)log x

.

� Soluzione di (1). Si osservi che la funzione (log x)x−3 è definita per log x > 0, cioè per
x > 1. Dunque il limite proposto non ha senso.

Si osservi che invece sarebbe stata diversa la situazione di

lim
x→0+

| log x|x−3 = lim
x→0+

e(x−3) log | log x|

dove lim
x→0+

(x− 3) log | log x| = −3 lim
x→0+

log | log x| = −∞ da cui

lim
x→0+

| log x|x−3 = lim
x→0+

e(x−3) log | log x| = lim
y→−∞

ey = 0 .

Soluzione di (2). Si noti dapprima che la funzione

(
1

x+ 2

)log x

è definita per x > 0,

inoltre (
1

x+ 2

)log x

= e(log x)·log(x+2)−1

= e−(log x)[log(x+2)]

dove
lim
x→0+

(log x)[log(x+ 2)] = −∞ .

Pertanto

lim
x→0+

(
1

x+ 2

)log x

= lim
x→0+

e−(log x)[log(x+2)] = lim
y→−∞

e−y = +∞ . �
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Esercizio 3.3. Calcolare i seguenti limiti:

(1) lim
x→+∞

logx

(
e−x +

1

2

)
, (2) lim

x→2

[√
x2 − 3x+ 2 − x

x− 2

]
.

� Soluzione di (1). Poiché

logx

(
e−x +

1

2

)
=

log

(
e−x +

1

2

)
log x

,

e lim
x→+∞

e−x = 0, si ha

lim
x→+∞

log

(
e−x +

1

2

)
= lim

y→0
log

(
y +

1

2

)
= log

1

2

mentre
lim

x→+∞
log x = +∞ .

Allora

lim
x→+∞

logx

(
e−x +

1

2

)
= lim

x→+∞

log
(
e−x + 1

2

)
log x

= 0 .

Soluzione di (2). La funzione f(x) =
√
x2 − 3x+ 2 è definita per x2 − 3x+ 2 ≥ 0 cioè

per x ∈ (−∞, 1] ∪ [2,+∞); la funzione g(x) =
x

x− 2
è definita per x 6= 2. Pertanto il

limite proposto è in realtà

lim
x→2+

[√
x2 − 3x+ 2− x

x− 2

]
.

Si ha che lim
x→2+

√
x2 − 3x+ 2 = 0 mentre, essendo x− 2 > 0, è

lim
x→2+

x

x− 2
= +∞ .

Pertanto

lim
x→2+

[√
x2 − 3x+ 2− x

x− 2

]
= −∞ . �

Esercizio 3.4. Calcolare i limiti

(1) lim
x→1+

log(2− x)

− log(x− 1)
, (2) lim

x→2−

e2−x

2− x
.

� Soluzione di (1).

lim
x→1+

log(2− x)

− log(x− 1)
= − lim

x→1+

log(2− x)

log(x− 1)

dove
lim
x→1+

log(2− x) = log 1 = 0 , lim
x→1+

log(x− 1) = −∞

per cui

lim
x→1+

log(2− x)

− log(x− 1)
= − lim

x→1+

(
log(2− x) · 1

log(x− 1)

)
= 0 .
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Soluzione di (2). Cambiando variabile e ponendo y = 2 − x è y → 0+ per x → 2− e
quindi

lim
x→2−

e2−x

2− x
= lim

y→0+

ey

y
= +∞ . �

Esercizio 3.5. Calcolare i limiti:

(1) lim
x→0+

xlog
2 x , (2) lim

x→+∞
x4 log 2x .

� Soluzione di (1).

lim
x→0+

xlog
2 x = lim

x→0+
e(log

2 x)(log x) = lim
x→0+

elog
3 x

dove lim
x→0+

log3 x = −∞. Allora

lim
x→0+

elog
3 x = lim

y→−∞
ey = 0 ,

quindi

lim
x→0+

xlog
2 x = 0 .

Soluzione di (2).

lim
x→+∞

x4 log 2x = lim
x→+∞

e4(log 2x)(log x)

dove lim
x→+∞

(log 2x)(log x) = +∞, quindi

lim
x→+∞

e4(log 2x)(log x) = lim
y→+∞

e4y = +∞

da cui

lim
x→+∞

x4 log 2x = +∞ . �

Esercizio 3.6. Calcolare i seguenti limiti:

(1) lim
x→−∞

1

coshx
earctan

1
sinh x , (2) lim

x→0+

1√
x+ |x2 − 2|

.

� Soluzione di (1). Si osservi che

lim
x→−∞

1

sinhx
= 0

quindi

lim
x→−∞

arctan
1

sinhx
= lim

y→0
arctan y = 0

da cui
lim

x→−∞
earctan

1
sinh x = lim

y→0
earctan y = lim

z→0
ez = 1

mentre

lim
x→−∞

1

coshx
= 0 .

Allora

lim
x→−∞

1

coshx
earctan

1
sinh x = 0 · 1 = 0 .
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Soluzione di (2).

lim
x→0+

1√
x+ |x2 − 2|

=
1√
| − 2|

=

√
2

2
. �

Esercizio 3.7. Calcolare i seguenti limiti:

(1) lim
x→∞

4x3 + 5x2 + 2x− 1

2x2
, (2) lim

x→−∞

x3 + 1

x− 1
.

� Soluzione di (1). Poiché lim
x→∞

(4x3 +5x2 +2x−1) =∞ ed è un infinito del terzo ordine,

lim
x→∞

2x2 =∞ ed è un infinito del primo ordine, si ha che

lim
x→∞

4x3 + 5x2 + 2x− 1

2x2
=∞

Soluzione di (2). Poiché lim
x→−∞

(x3 + 1) = −∞ ed è un infinito del terzo ordine,

lim
x→−∞

(x− 1) = −∞ ed è un infinito del primo ordine, si ha che

lim
x→−∞

x3 + 1

x− 1
= +∞ . �

Esercizio 3.8. Calcolare i seguenti limiti:

(1) lim
x→2

√
x+ 2−

√
2x√

x− 2
, (2) lim

x→1

x+ 1−
√
x

(x− 1)2
.

� Soluzione di (1). Il limite ha senso per x→ 2+, inoltre si presenta nella forma

indeterminata “
0

0
”. Razionalizzando sia il numeratore che il denominatore si ha

√
x+ 2−

√
2x√

x− 2
=

(2− x)
√
x− 2

(x− 2)(
√
x+ 2 +

√
2x)

= −
√
x− 2

√
x+ 2 +

√
2x

e quindi

lim
x→2+

√
x+ 2−

√
2x√

x− 2
= − lim

x→2+

√
x− 2

√
x+ 2 +

√
2x

= 0 .

Soluzione di (2). Poiché lim
x→1

x+ 1−
√
x = 1, lim

x→1
(x− 1)2 = 0 (con (x− 1)2 > 0) si ha

che

lim
x→1

x+ 1−
√
x

(x− 1)2
= +∞ . �

Esercizio 3.9. Calcolare i limiti:

(1) lim
x→+∞

x+
√
x

2
√
x

, (2) lim
x→0+

(
1 +

1

x

)x
.
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� Soluzione di (1). Poiché lim
x→+∞

x +
√
x = +∞ ed è un infinito del primo ordine,

lim
x→+∞

2
√
x = +∞ ed è un infinito di ordine

1

2
, si ha

lim
x→+∞

x+
√
x

2
√
x

= +∞ .

Soluzione di (2).

lim
x→0+

(
1 +

1

x

)x
= lim

x→0+
ex log(1+

1
x)

dove

lim
x→0+

x log

(
1 +

1

x

)
= lim

x→0+

log

(
1 +

1

x

)
1

x

= lim
y→+∞

log(1 + y)

y
= 0

perché il numeratore è un infinito di ordine 0 < k < 1 (si noti anche che per y → +∞ è
log(1 + y)

y
> 0); quindi

lim
x→0+

(
1 +

1

x

)x
= lim

z→0+
ez = 1 . �

Esercizio 3.10. Calcolare i limiti:

(1) lim
x→+∞

x2 − x+ 1

x
, (2) lim

x→−∞

x4 + 4

x2 − 1
.

� Soluzione di (1). Si ha che lim
x→+∞

(x2 − x + 1) = +∞, infinito del secondo ordine,

lim
x→+∞

x = +∞, infinito del primo ordine, quindi

lim
x→+∞

x2 − x+ 1

x
= +∞ .

Soluzione di (2). Si ha che lim
x→−∞

(x4 + 4) = +∞, infinito di ordine 4, lim
x→−∞

(x2 − 1) =

+∞, infinito del secondo ordine, quindi

lim
x→−∞

x4 + 4

x2 − 1
= +∞ . �

Esercizio 3.11. Calcolare i seguenti limiti:

(1) lim
x→1

x2 −
√

3x+ 1√
2x2 +

√
5x− (

√
5 +
√

2)
, (2) lim

x→+∞

√
x− 1

−x2 + 2x− 5
.

� Soluzione di (1). Si ha che lim
x→1

(x2−
√

3x+1) = 2−
√

3, lim
x→1

[
√

2x2+
√

5x−(
√

5+
√

2)] =

0 quindi

lim
x→1

x2 −
√

3x+ 1√
2x2 +

√
5x− (

√
5 +
√

2)
=∞ .
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Soluzione di (2). Si ha che lim
x→+∞

√
x− 1 = +∞, infinito di ordine

1

2
, lim
x→+∞

(−x2 +2x−
5) = −∞, infinito del secondo ordine, quindi

lim
x→+∞

√
x− 1

−x2 + 2x− 5
= 0 .

�

Esercizio 3.12. Calcolare i limiti:

(1) lim
x→1

3
√

1− x2
3
√

1− x3
, (2) lim

x→2

4− x2

3−
√

5x− 1
.

� Soluzione di (1). Il limite si presenta nella forma indeterminata “
0

0
”, tuttavia

3
√

1− x2
3
√

1− x3
=

3
√

1− x 3
√

1 + x
3
√

1− x 3
√

1 + x+ x2
=

3
√

1 + x
3
√
x2 + x+ 1

.

Pertanto

lim
x→1

3
√

1− x2
3
√

1− x3
= lim

x→1

3
√

1 + x
3
√
x2 + x+ 1

=
3

√
2

3
.

Soluzione di (2). Il limite si presenta nella forma indeterminata “
0

0
”. Razionalizzando

il denominatore si ha

4− x2

3−
√

5x− 1
=

(2− x)(2 + x)(3 +
√

5x− 1)

9− (5x− 1)
=

1

5
(2 + x)(3 +

√
5x− 1) .

Allora

lim
x→2

4− x2

3−
√

5x− 1
=

1

5
lim
x→2

(2 + x)(3 +
√

5x− 1) =
36

5
.

�

Esercizio 3.13. Calcolare i seguenti limiti:

(1) lim
x→0+

3

x2
− 2

x
− 7

5

x2
+

6

x
+ 5

, (2) lim
x→0+

(sinx)tanx .

� Soluzione di (1). Il limite dato è ricondotto al calcolo del limite

lim
y→+∞

3y2 − 2y − 7

5y2 + 6y + 5

dove lim
y→+∞

(3y2 − 2y − 7) = +∞, infinito del secondo ordine, lim
y→+∞

(5y2 + 6y + 5) = +∞,

infinito anch’esso del secondo ordine. Quindi

lim
x→0+

3

x2
− 2

x
− 7

5

x2
+

6

x
+ 5

=
3

5
.
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Soluzione di (2).
lim
x→0+

(sinx)tanx = lim
x→0+

etanx log sinx

dove

lim
x→0+

(tanx) log sinx = lim
y→0+

sinx log sinx

cosx
=

=

(
lim
x→0+

1

cosx

)(
lim
x→0+

sinx log sinx

)
=

(
lim
x→0+

1

cosx

)(
lim
y→0+

y log y

)
=

= lim
y→0+

y log y = lim
y→0+

log y
1

y

= 0

perché al numeratore si ha un infinito di ordine 0 < k < 1 e al denominatore si ha un
infinito del primo ordine. Quindi

lim
x→0+

(tanx) log sinx = 0

con (tan x) log sinx < 0. Allora

lim
x→0+

(sinx)tanx = lim
x→0+

etanx log sinx = lim
y→0−

ey = 1 .

�

Esercizio 3.14. Calcolare i limiti

(1) lim
x→0+

(
1 + sin2 x

)1/x4
, (2) lim

x→0

sin 3x

sin 2x
.

� Soluzione di (1).

lim
x→0+

(
1 + sin2 x

)1/x4
= lim

x→0+
e(1/x

4) log(1+sin2 x)

dove

lim
x→0+

log(1 + sin2 x)

x4
= lim

x→0+

log(1 + sin2 x)

sin2 x

sin2 x

x4
e

lim
x→0+

log(1 + sin2 x)

sin2 x
= lim

y→0+

log(1 + y)

y
= 1 ,

lim
x→0+

sin2 x

x4
= lim

x→0+

sin2 x

x2
1

x2
= lim

x→0+

1

x2
= +∞ ,

quindi

lim
x→0+

log(1 + sin2 x)

x4
= +∞ .

Allora
lim
x→0+

(
1 + sin2 x

)1/x4
= lim

y→+∞
ey = +∞ .

Soluzione di (2).

lim
x→0

sin 3x

sin 2x
=

3

2
lim
xto0

sin 3x

3x

2x

sin 2x
dove

lim
x→0

sin 3x

3x
= 1 , lim

x→0

2x

sin 2x
= 1
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quindi

lim
x→0

sin 3x

sin 2x
=

3

2
.

Un altro modo per risolvere il limite proposto è notare che la funzione sin ax è un
infinitesimo per x → 0 del I ordine e precisamente si comporta come la funzione ax. Si
può scrivere allora che

lim
x→0

sin 3x

sin 2x
= lim

x→0

3x

2x
=

3

2
.

�

Esercizio 3.15. Calcolare i seguenti limiti

(1) lim
x→0

x− sinx

x
, (2) lim

x→0

3x− tanx

sinx+ tan2 x
.

� Soluzione di (1). Il calcolo diretto è

lim
x→0

x− sinx

x
= lim

x→0

(
1− sinx

x

)
= 1− 1 = 0 .

Soluzione di (2). Sappiamo che la funzione f(x) = tanx per x → 0 è un infinitesimo
del I ordine e si comporta come la funzione x. Stessa cosa per la funzione sinx. Allora

lim
x→0

3x− tanx

sinx+ tan2 x
= lim

x→0

3x− x
x+ x2

= lim
x→0

2

1 + x
= 2 .

�

Esercizio 3.16. Calcolare i seguenti limiti

(1) lim
x→0

1− cos3 x

x sinx cosx
, (2) lim

x→0+

√
1− cosx

x
.

� Soluzione di (1). Si ha

lim
x→0

1− cos3 x

x sinx cosx
= lim

x→0

(1− cosx)(1 + cos x+ cos2 x)

x sinx cosx
=

= lim
x→0

1− cosx

x2
· lim
x→0

x2

x sinx
· lim
x→0

1 + cos x+ cos2 x

cosx
=

1

2
· 1 · 3 =

3

2
.

Soluzione di (2). Si ha

lim
x→0+

√
1− cosx

x
= lim

x→0+

√
1− cosx

x2
=

√
2

2
.

�

Esercizio 3.17. Calcolare i limiti

(1) lim
x→0

sinx+ cosx− 1

x
, (2) lim

x→π
2

(1− sinx)2

cosx
.
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� Soluzione di (1). Poiché la funzione f(x) = 1 − cosx è un infinitesimo del II ordine
per x→ 0, è

lim
x→0

1− cosx

x
= 0

da cui

lim
x→0

sinx+ cosx− 1

x
= lim

x→0

sinx

x
− lim

x→0

1− cosx

x
= 1 .

Soluzione di (2). Posto y = x − π

2
è y → 0 per x → π

2
, inoltre sinx = cos y,

cosx = − sin y. Pertanto

lim
x→π

2

1− sinx

cosx
= − lim

y→0

1− cos y

sin y

dove le funzioni f(y) = 1−cos y e f(y) = sin y sono infinitesime per y → 0 rispettivamente
del II e del I ordine. Quindi

lim
x→π

2

1− sinx

cosx
= 0 .

�

Esercizio 3.18. Calcolare

(1) lim
x→a

cosx− cos a

x− a
, (2) lim

x→0+
(log x− log sinx) .

� Soluzione di (1). Usando le formule di prostaferesi3 e ponendo y = x− a si ha

lim
x→a

cosx− cos a

x− a
= −2 lim

y→0

sin
y

2
y
· lim
y→0

sin
y + 2a

2
= − sin a .

Soluzione di (2). Abbiamo

lim
x→0+

(log x− log sinx) = lim
x→0+

log
x

sinx

e posto y =
x

sinx
è y → 1+ per x→ 0+, dunque

lim
x→0+

log
x

sinx
= lim

y→1+
log y = 0 .

�

Esercizio 3.19. Calcolare

(1) lim
x→π

2

1− sinx(
x− π

2

)2 , (2) lim
x→π

2

(tanx)(1− sinx) .

3 cosx− cos a = −2 sin
x− a

2
sin

x+ a

2
.



54 Elisabetta Barletta

� Soluzione di (1). Posto y = x− π

2
, il limite proposto è ricondotto al calcolo di

lim
x→π

2

1− sinx(
x− π

2

)2 = lim
y→0

1− cos y

y2
=

1

2
.

Soluzione di (2). Il limite si presenta nella forma indeterminata “∞·0”. Posto y = x−π
2

è sinx = cos y, cos x = − sin y quindi

lim
x→π

2

(tanx)(1− sinx) = − lim
y→0

(cot y)(1− cos y) = − lim
y→0

cos y · lim
y→0

1− cos y

sin y

dove le funzioni f(y) = 1−cos y e f(y) = sin y sono infinitesime per y → 0 rispettivamente
del II e del I ordine. Di conseguenza

lim
y→0

1− cos y

sin y
= 0

da cui

lim
x→π

2

(tanx)(1− sinx) = 0 .

�

Esercizio 3.20. Calcolare

(1) lim
x→+∞

x+ sinx

2x− sinx
, (2) lim

x→+∞

3
√
x+ 2x√
x− 1

.

� Soluzione di (1). Si ha

lim
x→+∞

x+ sinx

2x− sinx
= lim

x→+∞

1 + sinx
x

2− sinx
x

dove

lim
x→+∞

sinx

x
= 0 .

Infatti pur non esistendo il lim
x→+∞

sinx, è | sinx| ≤ 1 per ogni x ∈ R, dunque per ogni

ε > 0 si ha (x > 0) ∣∣∣∣sinxx
∣∣∣∣ ≤ 1

|x|
=

1

x
< ε

per x >
1

ε
; questo prova che

lim
x→+∞

sinx

x
= 0 .

Ne segue, dunque, che

lim
x→+∞

x+ sinx

2x− sinx
=

1

2
.
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Soluzione di (2). Abbiamo

lim
x→+∞

3
√
x+ 2x√
x− 1

= lim
x→+∞

x

(
3√
x

+ 2

)
√
x

(
1− 1√

x

) = lim
x→+∞

√
x

3√
x

+ 2

1− 1√
x

= +∞ .

�

Esercizio 3.21. Calcolare, usando i teoremi di de l’Hôpital, i seguenti limiti:

(1) lim
x→0+

sin
√
x+ x2

tanx
, (2) lim

x→−1−

sin(πx)
3
√
x2 − 1

.

� Soluzione di (1). Il limite si presenta nella forma indeterminata “
0

0
”. Applicando il

teorema di de l’Hôpital si ha

lim
x→0+

sin
√
x+ x2

tanx
= lim

x→0+

1

2
x−1/2 cos

√
x+ 2x

1 + tan2 x

dove

lim
x→0+

x−1/2 cos
√
x = lim

x→0+

cos
√
x√

x
= +∞ ,

lim
x→0+

2x = 0 , lim
x→0+

(1 + tanx) = 1

ed allora

lim
x→0+

sin
√
x+ x2

tanx
= +∞ .

Soluzione di (2). Il limite si presenta nella forma indeterminata “
0

0
”. Posto y = x+ 1

per x→ −1− è y → 0−, inoltre sin πx = sin π(y − 1) = sin(πy − π) = − sinπy, x2 − 1 =
(y − 1)2 − 1 = y(y − 2), dunque siamo ricondotti al calcolo di

− lim
y→0−

sinπy

[y(y − 2)]1/3

che, applicando il teorema di de l’Hôpital, dà

− lim
y→0−

π cosπy
1

3
[y(y − 2)]−2/3(2y − 2)

= −3

2
lim
y→0−

(cos πy)[y(y − 2)2/3]

y − 2
= 0 .

�

Esercizio 3.22. Calcolare, usando i teoremi di de l’Hôpital, i seguenti limiti:

(1) lim
x→π

2

sinx+ cos 2x

1 + sin2 2x+ cos 2x
, (2) lim

x→1+

sin
√
x− 1

cos
π

2
x

.
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� Soluzione di (1). Posto y = x− π

2
è sinx = cos y, cos 2x = − cos 2y, sin 2x = − sin 2y,

quindi siamo ricondotti a calcolare4

lim
y→0

cos y − cos 2y

1 + sin2 2y − cos 2y
=
H

H lim
y→0

− sin y + 2 sin 2y

4 sin 2y cos 2y + 2 sin 2y
=

= lim
y→0

− sin y + 2 sin 2y

2 sin 4y + 2 sin 2y
=
H

1

2
lim
y→0

− cos y + 4 cos 2y

4 cos 4y + 2 cos 2y
=

1

2
· 1

2
=

1

4
.

Soluzione di (2). Posto y = x− 1 siamo ricondotti al calcolo di

lim
y→0+

sin
√
y

cos
(π

2
(y + 1)

) = − lim
y→0+

sin
√
y

sin
π

2
y

=
H
−1

2
lim
y→0+

(cos
√
y) y−1/2

π

2
cos

π

2
y

=

= − 1

π
lim
y→0+

cos
√
y

√
y cos

(π
2
y
) = −∞ .

�

Esercizio 3.23. Calcolare, usando i teoremi di de l’Hôpital, i limiti

(1) lim
x→0+

(log x− log sin 2x) , (2) lim
x→π

2

(tanx)(1− sinx) .

� Soluzione di (1). Si ha

lim
x→0+

(log x− log sin 2x) = lim
x→0+

log
x

sin 2x

dove

lim
x→0+

x

sin 2x

si presenta nella forma indeterminata “
0

0
”. Usando il teorema di de l’Hôpital si ha

lim
x→0+

x

sin 2x
=
H

lim
x→0+

1

2 cos 2x
=

1

2
.

Quindi posto y =
x

sin 2x
abbiamo

lim
x→0+

log
x

sin 2x
= lim

y→ 1
2

+
log y = log

1

2
= − log 2 .

Soluzione di (2). Posto x− π

2
= y si ha sinx = cos y, cos x = − sin y, quindi

lim
x→π

2

(tanx)(1− sinx) = − lim
y→0

cos y(1− cos y)

sin y
=
H

=
H

lim
y→0

sin y(1 + sin y)

cos y
= 0 .

�

4“=
H

” è l’uguaglianza che si ottiene usando il teorema di de l’Hôpital.
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Esercizio 3.24. Calcolare, usando i teoremi di de l’Hôpital, i limiti

(1) lim
x→+∞

5x tan
π

x
, (2) lim

x→1

arctan2(x− 1)

(1− x)2
.

� Soluzione di (1). Posto y =
π

x
, il limite è ricondotto a

5π lim
y→0+

tan y

y
=
H

5π lim
y→0+

(1 + tan2 y) = 5π .

Soluzione di (2). Posto y = x− 1, siamo ricondotti a

lim
y→0

arctan2 y

y2

che si presenta nella forma indeterminata “
0

0
”. Allora usando il teorema di de l’Hôpital

si ha

lim
y→0

arctan2 y

y2
=
H

lim
y→0

arctan y

y(1 + y2)
=
H

lim
y→0

1

(1 + y2)(1 + 3y2)
= 1 .

�

Esercizio 3.25. Calcolare, usando i teoremi di de l’Hôpital, i limiti

(1) lim
x→0

sin3 2x

x2 arctanx
2) lim

x→+∞

√
x
(π

2
− arctanx

)
.

� Soluzione di (1). Il limite si presenta nella forma indeterminata “
0

0
”. Applicando il

teorema di de l’Hôpital si ha

lim
x→0

sin3 2x

x2 arctanx
=
H

lim
x→0

6 sin2 2x cos 2x

2x arctanx+
x2

1 + x2

=

= 6 lim
x→0

(1 + x2) sin2 2x cos 2x

2x(1 + x2) arctanx+ x2
= 3 lim

x→0

sin 2x

x
· (1 + x2) sin 4x

2(1 + x2) arctanx+ x
=

= 6 lim
x→0

(1 + x2) sin 4x

2(1 + x2) arctanx+ x
=
H

6 lim
x→0

2x sin 4x+ 4(1 + x2) cos 4x

4x arctanx+ 2 + 1
= 6 · 4

3
= 8 .

Soluzione di (2). Il limite si presenta nella forma indeterminata “∞ · 0”, ma posto

y =
1√
x

, si ha

lim
x→+∞

√
x
(π

2
− arctanx

)
= lim

y→0+

π

2
− arctan

1

y2

y
=
H

=
H

lim
y→0+

− 1

1 +
1

y2

(−2

y3

)
= 2 lim

y→0+

y2

y2 + 1
· 1

y3
=
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= 2 lim
y→0+

1

y(y2 + 1)
= +∞ .

�

Esercizio 3.26. Usando i teoremi di de l’Hôpital, determinare i limiti

(1) lim
x→0

x2 − arctanx2

(1− cosx)3
, (2) lim

x→0

sin 3x

sin 2x
.

� Soluzione di (1). Il limite si presenta nella forma indeterminata “
0

0
”. Applicando il

teorema di de l’Hôpital, si ha

lim
x→0

x2 − arctanx2

(1− cosx)3
=
H

lim
x→0

2x− 2x
1+x4

3(1− cosx)3 sinx
=

=
2

3
lim
x→0

x5

sinx(1− cosx)2(1 + x4)
=

=
2

3

(
lim
x→0

x

sinx

)(
lim
x→0

x4

(1− cosx)2

)(
lim
x→0

1

1 + x4

)
=

=
2

3
lim
x→0

(
x

1− cosx

)2

=
2

3
· 4 =

8

3
.

Soluzione di (2). Dovendo usare i teoremi di de l’Hôpital per questa forma indetermi-

nata “
0

0
” (che tuttavia potrebbe essere facilmente risolta con banali passaggi algebrici e

tenendo conto del limite notevole lim
x→0

sinx

x
), si ha

lim
x→0

sin 3x

sin 2x
=
H

lim
x→0

3 cos 3x

2 cos 2x
=

3

2
.

�

Esercizio 3.27. Usando i teoremi di de l’Hôpital, risolvere le forme indeterminate dei
seguenti limiti

(1) lim
x→0

sinx+ cosx− 1

x
, (2) lim

x→0+

(
1

sinx
− 1

x

)
.

� Soluzione di (1). Dovendo usare i teoremi di de l’Hôpital per questa forma indeter-

minata “
0

0
” (che tuttavia potrebbe essere facilmente risolta considerandone l’ordine degli

infinitesimi), si ha

lim
x→0

sinx+ cosx− 1

x
=
H

lim
x→0

(cosx− sinx) = 1 .

Soluzione di (2). Abbiamo

lim
x→0+

(
1

sinx
− 1

x

)
= lim

x→0+

x− sinx

x sinx
=
H

lim
x→0+

1− cosx

sinx+ x cosx
=
H
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=
H

lim
x→0+

sinx

2 cosx− x sinx
= 0 .

�

Esercizio 3.28. Risolvere le forme indeterminate dei seguenti limiti usando i teoremi di
de l’Hôpital:

(1) lim
x→0

1− cosx

x− sinx
, (2) lim

x→0

x− arctanx

arcsinx− x
.

� Soluzione di (1). Questa forma indeterminata “
0

0
” risolta con il teorema di de l’Hôpital

dà

lim
x→0

1− cosx

x− sinx
=
H

lim
x→0

sinx

1− cosx
=
H

lim
x→0

cosx

sinx
=∞ .

Soluzione di (2). Usando il teorema di de l’Hôpital per questa forma indeterminata

“
0

0
”. si ottiene

lim
x→0

x− arctanx

arcsinx− x
=
H

lim
x→0

1− 1

1 + x2

1√
1− x2

− 1
=

= lim
x→0

x2
√

1− x2

(1 + x2)(1−
√

1− x2)
=

(
lim
x→0

x2

1−
√

1− x2

)(
lim
x→0

√
1− x2

1 + x2

)
=

= lim
x→0

x2

1−
√

1− x2
=
H
− lim

x→0

2x
1

2
(1− x2)−1/2(−2x)

= 2 lim
x→0

√
1− x2 = 2 .

�

Esercizio 3.29. Risolvere le forme indeterminate dei limiti seguenti usando i teoremi di
de l’Hôpital:

(1) lim
x→0

ex − e−x − 2x

x− sinx
, (2) lim

x→0+

(
cot2 x− 1

x2

)
.

� Soluzione di (1). Applicando il teorema di de l’Hôpital a questa forma indeterminata

“
0

0
” si ottiene

lim
x→0

ex − e−x − 2x

x− sinx
=
H

lim
x→0

ex + e−x − 2

1− cosx
=
H

lim
x→0

ex − e−x

sinx
=
H

lim
x→0

ex + e−x

cosx
= 2 .

Soluzione di (2). Il limite si presenta nella forma indeterminata “∞−∞”. Tuttavia

lim
x→0+

(
cot2 x− 1

x2

)
= lim

x→0+

(
cos2 x

sin2 x
− 1

x2

)
= lim

x→0+

x2 cos2 x− sin2 x

x2 sin2 x
=

= lim
x→0+

(x cosx− sinx)(x cosx+ sinx)

x2 sin2 x
=

=

(
lim
x→0+

x cosx− sinx

x2 sinx

)(
lim
x→0+

x cosx+ sinx

sinx

)
=
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=

(
lim
x→0+

x cosx− sinx

x2 sinx

)[(
lim
x→0+

x cosx

sinx

)
+ 1

]
=

= 2 lim
x→0+

x cosx− sinx

x2 sinx

e quest’ultimo si presenta nella forma indeterminata “
0

0
”. Usando allora il teorema di de

l’Hôpital si ottiene

lim
x→0+

x cosx− sinx

x2 sinx
=
H
− lim

x→0+

x sinx

2x sinx+ x2 cosx
=

= − lim
x→0+

x sinx

x sinx
(

2 +
x cosx

sinx

) =

= − lim
x→0+

1

2 +
x cosx

sinx

= −1

3
.

Quindi

lim
x→0+

(
cot2 x− 1

x2

)
= −2

3
.

�

Esercizio 3.30. Calcolare i seguenti limiti usando i teoremi di de l’Hôpital:

(1) lim
x→0

1− x2

2
− cosx

x4
, (2) lim

x→π
2
−

[
tan2 x−

(π
2
− x
)−2]

.

� Soluzione di (1). Applicando il teorema di de l’Hôpital a questa forma indeterminata

“
0

0
” si ha

lim
x→0+

1− x2

2
− cosx

x4
=
H

lim
x→0+

−x+ sinx

4x3
=
H

lim
x→0

−1 + cos x

12x2
= − 1

24
.

Soluzione di (2). Posto y = x− π

2
si ha sinx = cos y, cos x = − sin y, allora

lim
x→π

2
+

tan2 x− 1(π
2
− x
)2
 = lim

y→0+

(
cot2 y − 1

y2

)
che è lo stesso del (2) dell’Esercizio 3.29.

�
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4. Esercizi sullo studio del grafico di una funzione di una variabile reale

Esercizio 4.1. Studiare il grafico delle seguenti funzioni

f1(x) =
x2

x2 − 1
, f2(x) =

1 + x3/5

1− x3/5
.

� Studio di f1(x).

(A) Dominio della funzione
Il dominio della funzione è

D(f1) = {x ∈ R : x2 − 1 6= 0} = R\{−1, 1} = (−∞,−1) ∪ (−1, 1) ∪ (1,+∞) .

(B) Comportamento agli estremi degli intervalli che compongono il dominio

lim
x→−∞

x2

x2 − 1
= 1 , lim

x→−1−

x2

x2 − 1
= +∞ , lim

x→−1+

x2

x2 − 1
= −∞

lim
x→1−

x2

x2 − 1
= −∞ , lim

x→1+

x2

x2 − 1
= +∞ , lim

x→+∞

x2

x2 − 1
= 1 .

La retta di equazione y = 1 è un asintoto orizzontale per x → ±∞, mentre le rette di
equazione x = −1 e x = 1 sono asintoti verticali.

(C) Ricerca dei punti di estremo e monotonia della funzione

I punti da determinare sono da ricercare tra i punti dell’insieme

{x ∈
◦

D(f1): f
′
1(x) = 0} .

Essendo D(f1) un aperto e f1 derivabile con

f ′1(x) = −2x(x2 − 1)−2

si ha

{x ∈ D(f1) : f ′1(x) = 0} = {x ∈ D(f1) : 2x = 0} = {0} .
Sia I(0, r) ⊂ D(f1) un intorno di 0; se x ∈ I(0, r), x < 0, ovvero −r < x < 0, allora
2x < 0 e quindi f ′1(x) > 0 da cui f1 è strettamente crescente nell’intorno sinistro di
0; se invece x ∈ I(0, r), x > 0, ovvero 0 < x < r, allora 2x > 0 e f ′1(x) < 0 da cui
f1 è strettamente decrescente nell’intorno destro di 0. Il punto 0 è pertanto un punto
di massimo locale per f1 che tra l’altro risulta esserne l’unico punto di estremo locale.
Dall’espressione di f ′1(x) si noti che per x ∈ D(f1), x < 0, è f ′1(x) > 0 ovvero f1 è
strettamente crescente in (−∞,−1)∪ (−1, 0], mentre, in modo analogo, f1 è strettamente
decrescente in [0, 1) ∪ (1,+∞).

(D) Ricerca dei punti di flesso e concavità e/o convessità della funzione

I punti di flesso della funzione sono da ricercare tra i punti dell’insieme

{x ∈
◦

D(f1): f
′′
1 (x) = 0} .

Poiché5

f ′′1 (x) = 2(x2 − 1)−3(3x2 + 1) ,

5f1 è derivabile due volte.



62 Elisabetta Barletta

non ci sono punti di flesso ed essendo 3x2 + 1 > 0 per ogni x ∈ R, si ha che f ′′1 < 0 per
(x2−1)3 < 0 ovvero per x2−1 < 0, i.e. per x ∈ (−1, 1); mentre è f ′′1 > 0 per (x2−1)3 > 0
ovvero per x2 − 1 > 0, i.e. per x ∈ (−∞,−1) ∪ (1,+∞). Quindi f1 è concava in (−1, 1)
ed è convessa in (−∞,−1) ∪ (1,+∞).

Studio di f2(x).

(A) Dominio della funzione

D(f2) = {x ∈ R : 1− x3/5 6= 0} = {x ∈ R : x3/5 6= 1} = {x ∈ R : x 6= 1}
dunque

D(f2) = R\{1} = (−∞, 1) ∪ (1,+∞)

che è un insieme aperto.

(B) Comportamento agli estremi degli intervalli che compongono il dominio

lim
x→−∞

1 + x3/5

1− x3/5
= −1 , lim

x→1−

1 + x3/5

1− x3/5
= +∞ ,

lim
x→1+

1 + x3/5

1− x3/5
= −∞ , lim

x→+∞

1 + x3/5

1− x3/5
= −1 .

La retta y = −1 è un asintoto orizzontale per x → ±∞ mentre la retta x = 1 è un
asintoto verticale.

(C) Ricerca dei punti di estremo e monotonia della funzione

I punti di estremo locale sono da ricercare in

{x ∈ D(f2) : f ′2(x) = 0} .
Poiché

f ′2(x) =
6

5
x−2/5(1− x3/5)−2 per x 6= 0

la funzione è priva di estremi locali in D(f2)\{0}. Inoltre in tale insieme f ′2(x) > 0 per
cui la funzione in D(f2)\{0} è strettamente crescente. In 0 si ha

lim
x→0−

f2(x)− f2(0)

x
= lim

x→0−

1

x

[
1 + x3/5

1− x3/5
− 1

]
=

= 2 lim
x→0−

x3/5

x(1− x3/5)
= 2 lim

x→0−

1

x2/5(1− x3/5)
= +∞ = lim

x→0+

f2(x)− f2(0)

x

che prova che 0 è un punto di cuspide. Siccome f2(0) = 1, se x appartiene ad un intorno
sinistro di 0 allora x3/5 < 0, quindi 1 + x3/5 < 1 − x3/5 con 1 − x3/5 > 0, dunque in un
intorno sinistro di 0 si ha

f2(x) =
1 + x3/5

1− x3/5
< 1 = f2(0) .

In un intorno destro di 0 si ha x3/5 > 0, quindi 1 + x3/5 > 1 − x3/5; possiamo supporre
che sia 0 < x < 1 cosicché in un intorno di 0 abbastanza piccolo sia 1− x3/5 > 0. Allora
in un intorno destro di 0 è

f2(x) =
1 + x3/5

1− x3/5
> 1 = f2(0) .

Le due disuguaglianze provano che 0 non è un punto di estremo locale.
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(D) Ricerca dei punti di flesso e concavità e/o convessità della funzione

I punti di flesso sono da cercare tra i punti dell’insieme

{x ∈ D(f2) : f ′′2 (x) = 0} .
Poiché

f ′′2 (x) =
12

25
x−7/5(1− x3/5)−3(4x3/5 − 1)

i punti di flesso sono tra i punti di D(f2) per cui

4x3/5 − 1 = 0 .

Si ha che x = 4−5/3 ∈ D(f2) è l’unico punto di flesso.

Infatti se 0 < x ≤ 4−5/3 allora x−7/5 > 0, x3/5 ≤ 1

4
< 1 che dà 1− x3/5 > 0, 4x3/5− 1 ≤ 0,

di conseguenza f ′′2 (x) ≤ 0 che implica f2(x) concava in (0, 4−5/3].

Se 4−5/3 ≤ x < 1 allora x−7/5 > 0,
1

4
≤ x3/5 < 1 che dà 1 − x3/5 > 0, 4x3/5 − 1 ≥ 0, di

conseguenza f ′′2 (x) ≥ 0 che implica f2(x) convessa in [4−5/3, 0).
Inoltre per x < 0 si ha x−7/5 < 0, 1 − x3/5 > 0, 4x3/5 − 1 < 0, di conseguenza f ′′2 (x) > 0
che implica f2(x) convessa in (−∞, 0).
Infine per x > 1 è x−7/5 > 0, 1 − x3/5 < 0, 4x3/5 − 1 > 0, di conseguenza f ′′2 (x) < 0 che
implica f2(x) concava in (1,+∞).

�

Esercizio 4.2. Studiare il grafico delle funzioni

f3(x) = e1/xx1/3 , f4(x) = 6x log x− (3x− 2)[log(3x− 2) + 1]− 4 log 2 .

Esercizio 4.3. Studiare il grafico di

f5(x) = 1− x+ (x2/3 − 1)
√
x2/3 + 1 , f6(x) = 1− e

1+sin x
−1+sin x .

� Studio di f5(x).

(A) Dominio della funzione
D(f5) = R

(B) Comportamento della funzione agli estremi del dominio

Si considerino le funzioni

f(x) = x1/3 , g(y) = 1− y3 + (y2 − 1)
√
y2 + 1

cosicché
f5(x) = (g ◦ f)(x) .

Allora
lim

x→−∞
f5(x) = lim

x→−∞
(g ◦ f)(x) , lim

x→+∞
f5(x) = lim

x→+∞
(g ◦ f)(x)

dove
lim

x→−∞
f(x) = lim

x→−∞
x1/3 = −∞ , lim

x→+∞
f(x) = lim

x→+∞
x1/3 = +∞

per cui
lim

x→−∞
f5(x) = lim

y→−∞
g(y) , lim

x→+∞
f5(x) = lim

y→+∞
g(y) .
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Si ha dunque:

lim
x→−∞

f5(x) = lim
y→−∞

(
1− y3 + (y2 − 1)

√
y2 + 1

)
=

= lim
y→−∞

(
1− y3 + (y2 − 1)|y|

√
1 +

1

y2

)
=

= lim
y→−∞

(
1− y3 − y(y2 − 1)

√
1 +

1

y2

)
=

= lim
y→−∞

{
1− y3

(
1 +

√
1 +

1

y2

)
+ y

√
1 +

1

y2

}
= +∞

di ordine 3 rispetto a y = x1/3 ovvero di ordine 1 rispetto a x: vi potrebbe quindi essere
un asintototo obliquo per x→ −∞. Si ha:

lim
x→−∞

f5(x)

x
= lim

x→−∞

(g ◦ f)(x)

x
= lim

y→−∞

g(y)

y3
=

= lim
y→−∞

1− y3 + (y2 − 1)
√
y2 + 1

y3
=

= lim
y→−∞

1− y3 + |y|(y2 − 1)
√

1 + 1/y2

y3
= lim

y→−∞

1− y3 − y(y2 − 1)
√

1 + 1/y2

y3
=

= lim
y→−∞

y3
[

1

y3
− 1−

(
1− 1

y2

)√
1 +

1

y2

]
y3

= −2 ,

e questo è il coefficiente angolare m dell’asintoto obliquo se esiste finito il

lim
x→−∞

(
f5(x)−mx

)
.

Si ha:

lim
x→−∞

(
f5(x)−mx

)
= lim

x→−∞

(
f5(x) + 2x

)
=

= lim
x→−∞

(
1− x+ (x2/3 − 1)

√
x2/3 + 1 + 2x

)
=

=
y=x1/3

lim
y→−∞

(
1 + y3 + (y2 − 1)

√
y2 + 1

)
che si presenta nella forma indeterminata “∞−∞”. Tale forma indeterminata è data da

lim
y→−∞

(
y3 + (y2 − 1)

√
y2 + 1

)
.

Razionalizzando si ottiene:

lim
y→−∞

y6 − (y2 − 1)2(y2 + 1)

y3 − (y2 − 1)
√
y2 + 1

= lim
y→−∞

y6 − (y4 − 2y2 + 1)(y2 + 1)

y3 − |y|(y2 − 1)

√
1 +

1

y2

=

= lim
y→−∞

(y4 + y2 − 1

y3
[
1 +

(
1− 1

y2

)√
1 +

1

y2

] = −∞ .
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Dunque non vi è l’asintoto obliquo per x→ −∞.
Per x→ +∞ si ha:

lim
x→+∞

f5(x) = lim
y→+∞

(
1− y3 + (y2 − 1)

√
y2 + 1

)
che si presenta nella forma indeterminata “∞−∞”. Tale forma proviene dal

lim
y→+∞

(
(y2 − 1)

√
y2 + 1− y3

)
.

Razionalizzando si ottiene

lim
y→+∞

(y2 − 1)2(y2 + 1)− y6

(y2 − 1)
√
y2 + 1 + y3

= lim
y→+∞

(y4 − 2y2 + 1)(y2 + 1)− y6

|y|(y2 − 1)

√
1 +

1

y2
+ y3

=

= lim
y→+∞

−y4 − y2 + 1

y3
[(

1− 1

y2

)√
1 +

1

y2
+ 1

] = −∞

di ordine 1 rispetto a y ovvero di ordine
1

3
rispetto a x: non vi è quindi asintoto obliquo

per x→ +∞.

(C) Ricerca dei punti di estremo e monotonia della funzione

Si osservi che nel punto x0 = 0 la funzione potrebbe non essere derivabille. Infatti:

lim
x→0

f5(x)− f5(0)

x
= lim

x→0

1− x+ (x2/3 − 1)
√
x2/3 + 1

x
=

=
y=x1/3

lim
y→0

1− y3 + (y2 − 1)
√
y2 + 1

y3
=

=
H

lim
y→0

1− 3y2 + 2y(y2 + 1)1/2 + y(y2 − 1)(y2 + 1)−1/2

3y2
= +∞ .

Perciò l’origine è un punto di cuspide.
I punti di estremo locale sono quindi da ricercare tra i punti di R\{0} per cui f ′5(x) = 0.
Poiché f5 = g ◦ f allora

f ′5(x) = g′(f(x))f ′(x)

e siccome f ′(x) =
1

3
x−2/3 > 0, posto y = f(x), deve essere g′(y) = 0. Si ha

g′(y) = y(y2 + 1)−1/2
[
3y2 + 1− 3y(y2 + 1)1/2

]
da cui g′(y) = 0 se e solo se (per y = 0 sarebbe x = 0) 3y2 + 1− 3y(y2 + 1)1/2 = 0 ovvero

3y2 + 1 = 3y(y2 + 1)1/2 .

Questa equazione non è mai soddisfatta per y < 0, mentre per y > 0 si ha la soluzione

y =

√
3

3
ovvero il punto x1 =

√
3

9
.

Sia I(x1, r) un intorno di x1: senza perdere di generalità, si può supporre x > 0 per ogni
x ∈ I(x1, r) da cui segue y > 0; allora y(y2 + 1)−1/2 > 0.
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Se x ∈ I(x1, r), x < x1, allora y <

(√
3

9

)1/3

da cui y2 <

(√
3

9

)2/3

=

(
1

27

)1/3

=
1

3
,

quindi 3y2 < 1. Ne segue che

(3y2 + 1)2 = 9y4 + 6y2 + 1 > 9y4 + 6y2 + 3y2 = 9y4 + 9y2 = 9y2(y2 + 1)

perciò

3y2 + 1 > 3y
√
y2 + 1 .

Dunque per x ∈ I(x1, r), x < x1, è g′(y) > 0 da cui f ′5(x) > 0 e f5 risulta essere
strettamente crescente in (x1 − r, x1).

Se invece x ∈ I(x1, r), x > x1, allora y >

(√
3

9

)1/3

da cui y2 >
1

3
, quindi 3y2 > 1.

Procedendo come prima si avrà

3y2 + 1 < 3y
√
y2 + 1

ottendo cos̀ı g′(y) < 0 per x ∈ I(x1, r), x > x1 da cui f ′5(x) < 0 e f5 strettamente
decrescente in (x1, x1 + r).

Pertanto x1 =

√
3

9
è un punto di massimo locale per la funzione f5.

(D) Ricerca dei punti di flesso e concavità e/o convessità della funzione

Da f ′5(x) = g′(f(x))f ′(x) si ha

f ′′5 (x) = g′′(f(x))f ′(x)2 + g′(f(x))f ′′(x)

dove f ′(x) =
1

3
x−2/3 =

1

3
f(x)−2, f ′′(x) = −2

9
x−5/3 = −2

9
f(x)−5 per cui

f ′′5 (x) =
1

9
g′′(f(x))f(x)−4 − 2

9
g′(f(x))f(x)−5

ovvero

f ′′5 (x) =
1

9
f(x)−5 [f(x)g′′(f(x))− 2g′(f(x))] .

Allora

f ′′5 (x) = (h ◦ f)(x) per h(y) =
1

9
y−5 [yg′′(y)− 2g′(y)] .

I punti di flesso sono da cercare fra i punti per cui f ′′5 (x) = 0 e quindi, posto come prima
y = f(x), sono da cercare fra i punti per cui h(y) = 0, cioè tra i punti per cui

yg′′(y)− 2g′(y) = 0 .

Si ha:

g′′(y) =
d

dx

{
{y(y2 + 1)−1/2

[
3y2 + 1− 3y(y2 + 1)1/2

]}
=

=

[
d

dx

(
y(y2 + 1)−1/2

)] [
3y2 + 1− 3y(y2 + 1)1/2

]
+

+y(y2 + 1)−1/2
[
6y − 3(y2 + 1)1/2 − 3y2(y2 + 1)−1/2

]
=

=
[
(y2 + 1)−1/2 − y2(y2 + 1)−3/2

] [
3y2 + 1− 3y(y2 + 1)1/2

]
+

+y(y2 + 1)−1/2
[
6y − 3(y2 + 1)1/2 − 3y2(y2 + 1)−1/2

]
=

= (y2 + 1)−3/2
(
y2 + 1− y2

) [
3y2 + 1− 3y(y2 + 1)1/2

]
+
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+y(y2 + 1)−1/2
[
6y − 3(y2 + 1)1/2 − 3y2(y2 + 1)−1/2

]
=

= (y2 + 1)−3/2
{

3y2 + 1− 3y(y2 + 1)1/2+

+y(y2 + 1)
[
6y − 3(y2 + 1)1/2 − 3y2(y2 + 1)−1/2

] }
=

= (y2 + 1)−3/2
{

3y2 + 1− 3y(y2 + 1)1/2 + 6y2(y2 + 1)−
−3y(y2 + 1)3/2 − 3y3(y2 + 1)1/2

}
=

= (y2 + 1)−3/2
{

3y2 + 1− 3y(y2 + 1)1/2(1 + y2 + 1)+

+6y2(y2 + 1)− 3y3(y2 + 1)1/2
}

=

= (y2 + 1)−3/2
{

3y2 + 1− 6y(y2 + 1)1/2 − 3y3(y2 + 1)1/2+

+6y2(y2 + 1)− 3y3(y2 + 1)1/2
}

=

= (y2 + 1)−3/2
{

3y2 + 1− 6y(y2 + 1)1/2 − 6y3(y2 + 1)1/2 + 6y2(y2 + 1)
}

=

= (y2 + 1)−3/2
{

3y2 + 1− 6y(y2 + 1)1/2(1 + y2) + 6y2(y2 + 1)
}

quindi
g′′(y) = (y2 + 1)−3/2

[
3y2 + 1− 6y(y2 + 1)3/2 + 6y2(y2 + 1)

]
.

Allora

yg′′(y)− 2g′(y) = y(y2 + 1)−3/2
[
3y2 + 1− 6y(y2 + 1)3/2 + 6y2(y2 + 1)

]
−

−2y(y2 + 1)−1/2
[
3y2 + 1− 3y(y2 + 1)1/2

]
=

= y(y2 + 1)−3/2
{

3y2 + 1− 6y(y2 + 1)3/2 + 6y2(y2 + 1)−
−2(y2 + 1)

[
3y2 + 1− 3y(y2 + 1)1/2

]}
=

= y(y2 + 1)−3/2
{

3y2 + 1− 6y(y2 + 1)3/2 + 6y2(y2 + 1)−
−2(y2 + 1)(3y2 + 1) + 6y(y2 + 1)3/2

}
=

= y(y2 + 1)−3/2
[
(3y2 + 1)(1− 2y2 − 2) + 6y2(y2 + 1)

]
=

= y(y2 + 1)−3/2
(
− 6y4 − 3y2 − 2y2 − 1 + 6y4 + 6y2

)
cioè

yg′′(y)− 2g′(y) = y(y2 + 1)−3/2(y2 − 1) .

Pertanto f ′′5 (x) = 0 se e solo se y2 − 1 = 0 i.e. per x2/3 = 1, quindi si hanno i due
punti x2 = −1 e x3 = 1. f5 è convessa se y−5 [yg′′(y)− 2g′(y)] > 0 ed è concava se
y−5 [yg′′(y)− 2g′(y)] < 0. Allora f5 è convessa per y−4(y2 + 1)−3/2(y2 − 1) > 0 ed è
concava per y−4(y2 + 1)−3/2(y2 − 1) < 0, quindi è convessa per y2 − 1 > 0 (cioè per
y = x1/3 < −1 e per y = x1/3 > 1) e concava per y2− 1 < 0 (cioè per −1 < y = x1/3 < 1).
In definitiva f5 è convessa per negli intervalli (−∞,−1), (1,+∞) e concava nell’intervallo
(−1, 1). I punti x2 e x3 sono allora punti di flesso.

Esercizio 4.4. Studiare il grafico di

f7(x) =
2x+1 + 1

2x − 1
, f8(x) = x1/(4 log

2 x) .

Esercizio 4.5. Studiare il grafico di

f9(x) = arctan x− 1

2
x , f10(x) = arctan

(
4x− 1

4x
− 1

4|x|

)
.
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Esercizio 4.6. Studiare il grafico di

f11(x) = log(
√
x2 + 1− x)− 2 arctan

1

x
,

f12(x) = arctan
log x− 1

log x+ 1
+ log(log2 x+ 1) .

� Studio di f11(x).

(A) Dominio della funzione

D(f11) = {x ∈ R :
√
x2 + 1− x > 0, x 6= 0}

Si osservi che la disequazione
√
x2 + 1 > x è sempre soddisfatta per x < 0, mentre, per

x > 0, elevando al quadrato si ottiene x2 + 1 > x2 che ancora risulta essere sempre
soddisfatta. In conclusione,

D(f11) = (−∞, 0) ∪ (0,+∞) .

(B) Comportamento agli estremi degli intervalli che compongono il dominio

lim
x→−∞

(
log(
√
x2 + 1− x)− 2 arctan

1

x

)
= +∞ ,

lim
x→0−

(
log(
√
x2 + 1− x)− 2 arctan

1

x

)
= −2

(
−π

2

)
= π ,

lim
x→0+

(
log(
√
x2 + 1− x)− 2 arctan

1

x

)
= −2

(π
2

)
,

lim
x→+∞

(
log(
√
x2 + 1− x)− 2 arctan

1

x

)
= −2

(
−π

2

)
= −π .

Non vi sono né asintoti verticali né asintoti obliqui per x→ ±∞ (la funzione in tali casi
è un infinito logartimico).

(C) Ricerca dei punti di estremo e monotonia della funzione

f ′11(x) =
1

(x2 + 1)1/2 − x

(
1

2
(x2 + 1)−1/2(2x)− 1

)
− 2

1

1 +

(
1

x

)2

(
− 1

x2

)
=

=
1

(x2 + 1)1/2 − x
[
x(x2 + 1)−1/2 − 1

]
+

2

x2 + 1
=

=
1

(x2 + 1)1/2 − x
· x− (x2 + 1)1/2

(x2 + 1)1/2
+

2

x2 + 1
= − 1

(x2 + 1)1/2
+

2

x2 + 1
dunque

f ′11(x) =
2− (x2 + 1)1/2

x2 + 1
.

Ne segue che f ′11(x) = 0 se e solo se 2 − (x2 + 1)1/2 = 0 i.e. per x2 + 1 = 4. I punti
estremali sono allora i punti x1 = −

√
3 e x2 =

√
3. Il denominatore di f ′11 è positivo per

cui il segno di f ′11 è determinato dal segno del suo numeratore.
Sia I(x1, r) un intorno di x1: se x ∈ I(x1, r) con x < x1, allora x2 > 3 e di conseguenza
x2 + 1 > 4 da cui (x2 + 1)1/2 > 2, risultando cos̀ı f ′11 negativa nella parte sinistra di
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I(x1, r) e quindi f11 strettamente decrescente in (x1 − r, x1). Se invece x ∈ I(x1, r),
con x > x1, allora, poiché x1 + r < 0, è 3 > x2 e di conseguenza x2 + 1 < 4 da cui
(x2 + 1)1/2 < 2, risultando cos̀ı f ′11 positiva nella parte destra di I(x1, r) e quindi f11
strettamente crescente in (x1, x1 + r). Il punto x1 = −

√
3 è quindi un punto di minimo

locale con ordinata f11(−
√

3) = log(2 +
√

3) + 2 arctan

√
3

3
.

Sia ora I(x2, r) un intorno di x2: se x ∈ I(x2, r) con x < x2, allora x2 < 3 e di conseguenza
x2 + 1 < 4 da cui (x2 + 1)1/2 < 2, risultando cos̀ı f ′11 positiva nella parte sinistra di
I(x2, r) e quindi f11 strettamente crescente in (x2 − r, x2). In modo analogo, se x ∈
I(x2, r), con x > x2, allora x2 > 3 e di conseguenza x2 + 1 > 4 da cui (x2 + 1)1/2 > 2,
risultando f ′11 negativa nella parte destra di I(x2, r) e perciò f11 strettamente decrescente
in (x2, x2 + r). Quindi il punto x2 =

√
3 è un punto di massimo locale con ordinata

f11(
√

3) = log(2−
√

3)− 2 arctan

√
3

3
.

Infine la funzione è strettamente decrescente in (−∞,−
√

3) e in (
√

3,∞) e strettamente
crescente in (−

√
3, 0) e in (0,

√
3).

(D) Ricerca dei punti di flesso e concavità e/o convessità della funzione

I punti di flesso sono da cercare fra i punti del dominio di f11 per cui f ′′11 = 0.

f ′′11(x) =
d

dx

(
2− (x2 + 1)1/2

x2 + 1

)
=

d

dx

(
2− (x2 + 1)1/2

)
(x2 + 1)−1 =

= −1

2
(x2 + 1)−1/2(2x)(x2 + 1)−1 −

[
2− (x2 + 1)1/2

]
(x2 + 1)−2(2x) =

= −x(x2 + 1)−3/2 − 2x(x2 + 1)−2
[
2− (x2 + 1)1/2

]
=

= −x(x2 + 1)−2
{

(x2 + 1)1/2 + 2
[
2− (x2 + 1)1/2

]}
=

= −x(x2 + 1)−2
[
(x2 + 1)1/2 + 4− 2(x2 + 1)1/2

]
dunque

f ′′11(x) = −x(x2 + 1)−2
[
4− (x2 + 1)1/2

]
.

In (−∞, 0)∪ (0,+∞) f ′′11(x) = 0 se e solo se 4− (x2 + 1)1/2 = 0 ovvero per (x2 + 1)1/2 = 4
⇐⇒ x2 + 1 = 16. I punti x3 = −

√
15, x4 =

√
15 sono i probabili punti di flesso. Poiché

(x2 + 1)−2 > 0, il segno di f ′′11 è determinato dal suo numeratore. Se x ≤ −
√

15 allora
x2 ≥ 15 e di conseguenza x2 + 1 ≥ 16 da cui (x2 + 1)1/2 ≥ 4 risultando f ′′11(x) ≤ 0.
Dunque f11 è concava in (−∞,−

√
15]. Se invece −

√
15 ≤ x < 0 allora x2 ≤ 15, di

conseguenza x2 + 1 ≤ 16 da cui (x2 + 1)1/2 ≤ 4 risultando f ′′11(x) ≥ 0. Dunque f11 è
convessa in [−

√
15, 0). Il punto x3 = −

√
15 è allora un punto di flesso con ordinata

f11(−
√

15) = log(4 +
√

15) + 2 arctan

√
15

15
.

Analogamente, se 0 < x ≤
√

15 allora x2 ≤ 15, di conseguenza x2 + 1 ≤ 16 da cui
(x2 + 1)1/2 ≤ 4 risultando f ′′11(x) ≤ 0. Dunque f11 è concava in (0,

√
15]; se invece

x ≥
√

15 allora x2 ≥ 15, di conseguenza x2 + 1 ≥ 16 da cui (x2 + 1)1/2 ≥ 4 risultando
f ′′11(x) ≥ 0. Dunque f11 è convessa in [

√
15,+∞). Il punto x4 =

√
15 è allora un punto di

flesso con ordinata f11(
√

15) = log(4−
√

15)− 2 arctan

√
15

15
.
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Esercizio 4.7. Studiare il grafico delle funzioni

f13(x) = x+ log cosh x− tanhx , f14(x) = arcsin
√

1− x2 +
√

1− x2 .

Esercizio 4.8. Studiare il grafico di

f15(x) =
√

1 + x2 + arcsin(1 + x−2)−1/2 , f16(x) =
2− log−1 x√
| log x|

.

Esercizio 4.9. Studiare il comportamento del grafico delle funzioni

f17(x) = |x2 − 2x| ex , f18(x) = x2e
|x|−1
|x| .

Esercizio 4.10. Studiare il grafico di

f19(x) =
1 + | log x|
1− | log x|

, f20(x) = | sinx|esinx .

Esercizio 4.11. Studiare il grafico della funzione f(x) =
√
g(x), dove g(x) è una funzione

assegnata.

� Soluzione.

(A) Dominio della funzione

Il dominio della funzione f(x) è:

D(f) = {x ∈ R : g(x) ≥ 0} .
La funzione f(x) non è derivabile nei punti dove g(x) = 0; questi sono punti di cuspide
per la funzione f(x).

(B) Comportamento agli estremi degli intervalli che compongono il dominio

Nel caso in cui si debbano determinare i limiti lim
x→±∞

f(x) si noti che questi hanno senso

se lim
x→±∞

g(x) ≥ 0. In tal caso, se essi sono finiti, si ha:

lim
x→±∞

f(x) =
√

lim
x→±∞

g(x) ,

invece se lim
x→±∞

g(x) = +∞, allora

lim
x→±∞

f(x) = +∞ .

In quest’ultimo caso vanno poi ricercati gli eventuali asintoti obliqui col metodo noto.
Se g(x) ha un asintoto verticale in x = a (i.e. lim

x→a±
g(x) = ∞) e a è un punto di

accumulazione di D(f), allora anche f(x) ha un asintoto verticale in x = a; inoltre questo
può accadere solo nel caso lim

x→a±
g(x) = +∞ per cui si ha che lim

x→a±
f(x) = +∞.

(C) Ricerca dei punti di estremo e monotonia della funzione

Poiché f(x) = g(x)1/2 allora

f ′(x) =
1

2
g(x)−1/2g′(x) .
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Ne segue che i punti estremali della funzione g(x) (g′(x) = 0) appartenenti a
◦
D(f) sono

anche punti estremali della funzione f(x) e inoltre il segno della derivata f ′(x) è il segno

della derivata g′(x). Quest’ultimo fatto implica che se x0 ∈
◦
D(f) è un punto di minimo

(risp.te massimo) locale della funzione g(x) allora x0 è anche un punto di minimo (risp.te
massimo) locale della funzione f(x), e viceversa.

(D) Ricerca dei punti di flesso e concavità e/o convessità della funzione

f ′′(x) = −1

4
g(x)−3/2g′(x)2 +

1

2
g(x)−1/2g′′(x) =

=
1

4
g(x)−3/2

[
2g(x)g′′(x)− g′(x)2

]
.

I punti di flesso della funzione f(x) sono tra i punti di
◦
D(f) per cui

2g(x)g′′(x)− g′(x)2 = 0 .

Inoltre, poiché lo studio è condotto per g(x) ≥ 0, la funzione f(x) è convessa dove
2g(x)g′′(x)− g′(x)2 > 0 ed è concava dove 2g(x)g′′(x)− g′(x)2 < 0.

�

Esercizio 4.12. Studiare il grafico della funzione f(x) = 3
√
g(x), dove g(x) è una funzione

assegnata.

� Soluzione.

(A) Dominio della funzione

Il dominio della funzione f(x) è:

D(f) = D(g) .

La funzione f(x) non è derivabile nei punti interni del dominio D(g) dove g(x) = 0: tali
punti sono punti di cuspide per f(x).

(B) Comportamento agli estremi degli intervalli che compongono il dominio

Nel caso in cui occorra calcolare lim
x→±∞

f(x) si noti che se lim
x→±∞

g(x) è finito allora

lim
x→±∞

f(x) = 3

√
lim

x→±∞
g(x) ,

se lim
x→±∞

g(x) = ±∞ allora

lim
x→±∞

f(x) = ±∞ ;

in quest’ultimo caso si cercheranno gli eventuali asintoti obliqui con il metodo noto.
Se g(x) ha un asintoto verticale in x = a (i.e. lim

x→a±
g(x) = ∞) allora anche f(x) ha un

asintoto verticale in x = a e

lim
x→a±

f(x) = −∞ se lim
x→a±

g(x) = −∞ ,

lim
x→a±

f(x) = +∞ se lim
x→a±

g(x) = +∞ .

(C) Ricerca dei punti di estremo e monotonia della funzione
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Poiché f(x) = g(x)1/3 allora

f ′(x) =
1

3
g(x)−2/3g′(x) .

Dunque i punti estremali di g(x) appartenenti a
◦
D(f) sono anche punti estremali di f(x),

inoltre il segno della derivata f ′(x) è lo stesso della derivata g′(x). Quindi i punti di

minimo locale di g(x) appartenenti a
◦
D(f) sono tutti e soli i punti di minimo locale di

f(x), i punti di massimo locale di g(x) appartenenti a
◦
D(f) sono tutti e soli i punti di

massimo locale di f(x).

(D) Ricerca dei punti di flesso e concavità e/o convessità della funzione

f ′′(x) = −2

9
g(x)−5/3g′(x)2 +

1

3
g(x)−2/3g′′(x) =

=
1

9
g(x)−5/3

[
3g(x)g′′(x)− 2g′(x)2

]
.

I punti di flesso della funzione f(x) sono tra i punti di
◦
D(f) per cui

3g(x)g′′(x)− 2g′(x)2 = 0 .

Inoltre nell’insieme {x ∈
◦
D(f): g(x) ≥ 0} la funzione f(x) è convessa (risp.te concava) dove

3g(x)g′′(x)−2 g′(x)2 > 0 (risp.te 3g(x)g′′(x)−2 g′(x)2 < 0), invece nell’insieme {x ∈
◦
D(f):

g(x) ≤ 0} la funzione f(x) è convessa (risp.te concava) dove 3g(x)g′′(x) − 2 g′(x)2 < 0
(risp.te 3g(x)g′′(x)− 2 g′(x)2 > 0).

�

Esercizio 4.13. Studiare il grafico della funzione

f(x) =
3

√
(x− 1)2

x
.

Esercizio 4.14. Per a > 0 e b > 1/2, studiare la funzione

f(x) = | − ax+ b|+ 1

|ax+ b|
.

� Soluzione.

(A) Dominio della funzione

D(f) = R\{− b
a
} .

I caso. {
−ax+ b ≥ 0

ax+ b > 0
⇐⇒

{
−ax ≥ b

ax > −b
=⇒ x ∈ (− b

a
,
b

a
] .

In tal caso | − ax+ b| = −ax+ b e |ax+ b| = ax+ b ; la funzione da studiare è allora

f1(x) = −ax+ b+
1

ax+ b
, x ∈ (− b

a
,
b

a
] .
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(Si noti che, essendo a, b > 0, è − b
a
< 0 <

b

a
).

(IB) Comportamento di f1 agli estremi di (− b
a
,
b

a
]

lim
x→− b

a

+
f1(x) = lim

x→− b
a
)+

(
−ax+ b+

1

ax+ b

)
= +∞ ,

f1(
b

a
) =

1

2b
.

Siccome b >
1

2
, allora

1

b
< 2 =⇒ 0 <

1

2b
< 1.

(IC) Ricerca dei punti di estremo e monotonia di f1

f1(x) = −ax+ b+ (ax+ b)−1 =⇒ f ′1(x) = −a− a(ax+ b)−2

cioè

f ′1(x) = −a
[
1 +

1

(ax+ b)2

]
.

Poiché (ax + b)2 > 0 si ha che 1 +
1

(ax+ b)2
> 1 > 0 ed essendo a > 0 ne segue che

f ′1(x) < 0, per ogni x ∈ (− b
a
,
b

a
), dunque f1 è decrescente in (− b

a
,
b

a
) e non ha punti

estremali, quindi tantomeno, ha punti di estremo.

(ID) Ricerca dei punti di flesso e concavità e/o convessità di f1

f ′′1 (x) = 2a2(ax+ b)−3

e poiché siamo nel caso ax + b > 0, ne segue che (ax + b)−3 > 0, dunque f ′′1 (x) > 0, i.e.

f1 è convessa in (− b
a
,
b

a
).

II caso. {
−ax+ b ≥ 0

ax+ b < 0
⇐⇒


x ≤ b

a

x < − b
a

=⇒ x ∈ (−∞,− b
a

) .

In tal caso |ax+ b| = −ax− b e si ha da studiare la funzione

f2(x) = −ax+ b− 1

ax+ b
, x ∈ (−∞, − b

a
) .

(IIB) Comportamento di f2 agli estremi di (−∞, − b
a

)

lim
x→−∞

f2(x) = lim
x→−∞

(
−ax+ b− 1

ax+ b

)
= +∞

lim
x→− b

a

−
f2(x) = lim

x→− b
a

−

(
−ax+ b− 1

ax+ b

)
= +∞ .

Ricerca dell’eventuale asintoto per x→ −∞

lim
x→−∞

f2(x)

x
= lim

x→−∞

1

x

(
−ax+ b− 1

ax+ b

)
=
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= lim
x→−∞

[
−a+

1

x

(
b− 1

ax+ b

)]
= −a

lim
x→−∞

[f2(x)− (−ax)] = lim
x→−∞

[(
−ax+ b− 1

ax+ b

)
+ ax

]
=

= lim
x→−∞

(
b− 1

ax+ b

)
= b

Si ha dunque l’asintoto y = −ax+ b.

(IIC) Ricerca dei punti di estremo e monotonia di f2

f2(x) = −ax+ b− (ax+ b)−1 =⇒ f ′2(x) = −a+ a(ax+ b)−2

ovvero

f ′2(x) = a

[
1

(ax+ b)2
− 1

]
= a

(
1

ax+ b
− 1

)(
1

ax+ b
+ 1

)
.

Allora f ′2(x) = 0 se e solo se
1

ax+ b
− 1 = 0 o

1

ax+ b
+ 1 = 0 da cui ax+ b− 1 = 0

o ax+b+1 = 0, cioè f ′2(x) = 0 per x1 =
1− b
a

e x2 = −1 + b

a
. Si noti che x1 è da scartare

perché
1− b
a

=
1

a
− b

a
> − b

a
(essendo

1

a
> 0) e l’intervallo studiato è

(−∞, − b
a

). Invece x2 ∈ (−∞,− b
a

) perché −1 + b

a
< − b

a
.

Si noti che
1

ax+ b
− 1 < 0 per ogni x ∈ (−∞,− b

a
) perchè nel caso in questione

ax+ b < 0. Se x < x2 allora ax+ b < −1 da cui
1

ax+ b
> −1, i.e. 1 +

1

ax+ b
> 0.

Pertanto se x < x2 allora f ′2(x) < 0 e questo implica che f2(x) è decrescente.

Se invece x > x2 allora x > −1 + b

a
=⇒ ax + b > −1 ovvero

1

ax+ b
< −1 =⇒

1 +
1

ax+ b
< 0. In tal caso allora f ′2(x) > 0 e questo implica che f2(x) è crescente.

Dalla discussione fatta ne segue che il punto x2 = −1 + b

a
è un punto di minimo locale,

inoltre f2(x2) = f2(−
1 + b

a
) = 2b+ 2.

(IID) Ricerca dei punti di flesso e concavità e/o convessità di f2

f ′′2 (x) = −2a2(ax+ b)−3 .

Siccome nel caso studiato ax + b < 0, allora (ax + b)3 < 0, di conseguenza f ′′2 (x) > 0 e
f2(x) è convessa.

III caso. {
−ax+ b ≤ 0

ax+ b > 0
⇐⇒


x ≥ b

a

x > − b
a

=⇒ x ∈ [
b

a
,+∞) .
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In tal caso | − ax+ b| = ax− b, |ax+ b| = ax+ b e dobbiamo studiare la funzione

f3(x) = ax− b+
1

ax+ b
, x ∈ [

b

a
,+∞) .

(IIIB) Comportamento di f3 agli estremi di [
b

a
,+∞)

f3

(
b

a

)
=

1

2b
,

lim
x→+∞

f3(x) = lim
x→+∞

(
ax− b+

1

ax+ b

)
= +∞

Ricerca dell’eventuale asintoto obliquo per x→ +∞

lim
x→+∞

f3(x)

x
= lim

x→+∞

1

x

(
ax− b+

1

ax+ b

)
=

= lim
x→+∞

[
a+

1

x

(
−b+

1

ax+ b

)]
= a ,

lim
x→+∞

(f3(x)− ax) = lim
x→+∞

[(
ax− b+

1

ax+ b

)
− ax

]
=

=
1

ax+ b

(
−b+

1

ax+ b

)
= −b .

Si ha dunque l’asintoto y = ax− b.
(IIIC) Ricerca dei punti di estremo e monotonia di f3

f3(x) = ax− b+ (ax+ b)−1 =⇒ f ′3(x) = a− a(ax+ b)−2 = a

[
1− 1

(ax+ b)2

]
.

Ragionando come nel II caso si trova facilmente che f ′3(x) = 0 per x3 =
1− b
a

e x4 =

−1 + b

a
ed entrambe sono da scartare perché minori di

b

a
.

Pertanto f3 non ha punti estremali né tantomeno punti di estremo. Notare che in questo

caso 1 +
1

ax+ b
> 0 e poiché x ≥ b

a
, ax + b ≥ 2b > 1 quindi 1− 1

ax+ b
> 0. Dunque f3

è strettamente crescente in (2,+∞).

(IIID) Ricerca dei punti di flesso e concavità e/o convessità di f3

f ′′3 (x) = 2a2(ax+ b)−3 > 0

perché siamo nel caso ax+ b > 0, quindi f3 è convessa.

IV caso. {
−ax+ b ≤ 0

ax+ b < 0
⇐⇒


x ≥ b

a

x < − b
a

.
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Questo caso non si verifica mai.

Si noti che il punto x0 =
b

a
è un punto angoloso per la funzione f(x) in quanto

lim
x→x−0

f(x)− f(x0)

x− x0
= lim

x→ b
a

−

f(x)− f(
b

a
)

x− b

a

=

= lim
x→ b

a

a

ax− b

[
f1(x)− f1(

b

a
)

]
= lim

x→ b
a

a

ax− b

(
−ax+ b+

1

ax+ b
− 1

2b

)
=

= lim
x→ b

a

[
−a+

a

ax− b

(
1

ax+ b
− 1

2b

)]
= −a+ lim

x→ b
a

a

ax− b
2b− ax− b
2b(ax+ b)

=

= −a+
a

2b
lim
x→ b

a

b− ax
(ax− b)(ax+ b)

= −a− a

4b2
,

mentre in modo analogo si calcola che

lim
x→x+0

f(x)− f(x0)

x− x0
= lim

x→ b
a

+

f(x)− f(
b

a
)

x− b

a

=

= lim
x→ b

a

f3(x)− f3(
b

a
)

x− b

a

= a− a

4b2
.

�

Esercizio 4.15. Studiare, al variare di a ∈ R, il grafico della funzione

fa(x) = a sinx+ log

(√
sin2 x− 1

4
− sinx

)
.

� Soluzione.

(A) Dominio della funzione

D(fa) = {x ∈ R : sin2 x− 1

4
≥ 0,

√
sin2 x− 1

4
− sinx > 0} =

=
(
{x ∈ R : sinx ≤ −1

2
} ∪ {x ∈ R : sinx ≥ 1

2
}
)
∩

∩{x ∈ R :

√
sin2 x− 1

4
> sinx} =

=
(
{x ∈ R : sinx ≤ −1

2
} ∪ {x ∈ R : sinx ≥ 1

2
}
)
∩

∩
(
{x ∈ R : sinx < 0} ∪ {x ∈ R : sinx > 0, sin2−1

4
> sin2 x}

)
=

=
(
{x ∈ R :

π

6
+ 2kπ ≤ x ≤ 5

6
π + 2kπ, k ∈ Z}∪
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∪{x ∈ R :
7

6
π + 2kπ ≤ x ≤ 11

6
π + 2kπ, k ∈ Z}

)
∩

∩
(
{x ∈ R : (2k + 1)π < x < (2k + 2)π, k ∈ Z} ∪ ∅

)
.

Limitiamoci a studiare la funzione nell’intervallo [0, 2π] perché la funzione è periodica di
periodo 2π: infatti

fa(x+ 2kπ) = a sin(x+ 2kπ) + log

(√
sin2(x+ 2kπ)− 1

4
− sin(x+ 2kπ)

)
=

= a sinx+ log

(√
sin2 x− 1

4
− sinx

)
= fa(x) .

Dunque prenderemo(
{x ∈ [0, 2π] :

π

6
≤ x ≤ 5

6
π} ∪ {x ∈ [0, 2π] :

7

6
π ≤ x ≤ 11

6
π}
)
∩

∩{x ∈ [0, 2π] : π < x < 2π}
per cui

D(fa) = [
7

6
π ,

11

6
π] .

(B) Comportamento della funzione agli estremi del dominio

Si ha

fa(
7

6
π) = fa(

11

6
π) = −a

2
− log 2 .

(C) Ricerca dei punti di estremo e monotonia della funzione

Siano ϕ(x) = sinx e ga(t) = at + log

(√
t2 − 1

4
− t

)
per x ∈ [

7

6
π ,

11

6
π] e t ∈ [−1

2
,−1]

cosicché fa(x) = (ga ◦ ϕ)(x). Allora f ′a(x) = g′a(ϕ(x))ϕ′(x) = g′a(t) cosx, dove si è posto

t = ϕ(x). Quindi f ′a(x) = 0 se cosx = 0 oppure g′a(t) = 0. Nell’intervallo [
7

6
π ,

11

6
π] la

prima è soddisfatta per x0 =
3

2
π. Si ha

g′a(t) = a+
1√

t2 − 1

4
− t

 t√
t2 − 1

4

− 1

 =

= a+
1√

t2 − 1

4
− t

t−
√
t2 − 1

4√
t2 − 1

4

= a− 1√
t2 − 1

4

.
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Dunque g′a(t) = 0 se

√
t2 − 1

4
=

1

a
la quale è possibile solo se a > 0; inoltre g′a(t) = 0 per

t = −
√
a2 + 4

2a
∈ (−1,−1

2
). Affinché questa possa essere soddisfatta deve essere (a > 0)

−1 < −
√
a2 + 4

2a
< −1

2
=⇒ a2 >

4

3
⇐⇒ a ∈ (

2
√

3

3
,+∞) .

Se a ∈ (−∞, 2
√

3

3
] allora fa ha il solo punto estremale x0 =

3

2
π a cui corrisponde

t0 = sin
3

2
π = −1. In tal caso g′a(t0) ≤ 0.

Se a ∈ (−∞, 2
√

3

3
) allora g′a(t0) < 0 dunque esiste un intorno I(x0, r) tale che per ogni

x ∈ I(x0, r), g
′
a(t) < 0. Se x ∈ I(x0, r) e x ≤ x0 allora cos x ≤ 0, se invece x ≥ x0

allora cos x ≥ 0. Dunque per x ≤ x0 è f ′a(x) ≥ 0 e fa è crescente, mentre se x ≥ x0

è f ′a(x) ≤ 0 e fa è decrescente. Pertanto x0 =
3

2
π è un punto di massimo locale e

fa(
3

2
π) = −a− log

(
1 +

√
3

2

)
è il corrispondente valore di massimo locale.

Se a = 2

√
3

3
allora g′a(t0) = 0; sia I(x0, r) un intorno di x0 di raggio abbastanza piccolo

in modo che per x ∈ I(x0, r) \ {x0} sia −1 < t < −1

2
cosicché

1

4
< t2 < 1 da cui

0 < t2 − 1

4
<

3

4
che dà g′a(t) < 0. Ne segue che, per x ∈ I(x0, r), x ≤ x0, è f ′a(x) ≥ 0,

dunque fa è crescente, mentre per x ≥ x0, è f ′a(x) ≤ 0, dunque fa è

decrescente. Pertanto x0 =
3

2
π è un punto di massimo locale.

Infine se a ∈ (2

√
3

3
,+∞), oltre al punto x0 =

3

2
π, si avranno due valori x1, x2 ∈

[
7

6
π ,

11

6
π] per cui sinx1 = sinx2 = −

√
a2 + 4

2a
, con x1 <

3

2
π < x2. Si noti che la funzione

sinx a sinistra di
3

2
π è strettamente decrescente mentre a destra di

3

2
π è strettamente

crescente.
Stabiliamo ora se i tre punti estremali x0, x1 e x2 sono punti di estremo locale. Poiché

g′a(t0) = a− 2

√
3

3
> 0 esiste un intorno I(x0, r) tale che per ogni x ∈ I(x0, r), g

′
a(t) > 0.

Se x ∈ I(x0, r) e x ≤ x0 allora cosx ≤ 0, se invece x ≥ x0 allora cosx ≥ 0.

Ne segue che, per x ∈ I(x0, r), se x ≤ x0 allora f ′a(x) ≤ 0, dunque fa è decrescente in
(x0 − r, x0), mentre se x ≥ x0 allora f ′a(x) ≥ 0, dunque fa è crescente in (x0, x0 + r).

Pertanto x0 =
3

2
π è un punto di minimo locale e fa(

3

2
π) = −a − log

(
1 +

√
3

2

)
è il

corrispondente valore di minimo locale.

Poiché cos x1 < 0 allora esiste un intorno I(x1, r) tale che per ogni x ∈ I(x1, r),
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cosx < 0. Se x ∈ I(x1, r) e x ≤ x1 allora −1

2
> sinx ≥ sinx1 ovvero −

√
a2 + 4

2
a ≤ t <

−1

2
da cui

1

4
< t2 ≤ a2 + 4

4a2
=⇒ 0 < t2 − 1

4
≤ a2 + 4

4a2
− 1

4
i.e 0 < t2 − 1

4
≤ 1

a2
e

di conseguenza

√
t2 − 1

4
≤ 1

a
, pertanto a−

(
t2 − 1

4

)−1/2
≤ 0 i.e. g′a(t) ≤ 0.

Ne segue che per x ∈ I(x1, r) con x ≤ x1 è f ′a(x) ≥ 0, dunque fa è crescente in (x1−r, x1).

Se x ∈ I(x1, r) e x ≥ x1 allora sinx ≤ sinx1 < −
1

2
ovvero t ≤ −

√
a2 + 4

2a
< −1

2
da cui

t2 ≥ a2 + 4

4a2
>

1

4
=⇒ t2 − 1

4
≥ 1

a2
e di conseguenza

√
t2 − 1

4
≥ 1

a
, pertanto

a−
(
t2 − 1

4

)−1/2
≥ 0 i.e. g′(t) ≥ 0. Ne segue che per x ∈ I(x1, r) con x ≥ x1 è f ′a(x) ≤ 0,

dunque fa è decrescente in (x1, x1 + r).

Allora x1 è un punto di massimo locale e fa(x1) = −
√
a2 + 4

2
+ log

(
2 +

√
a2 + 4

2a

)
è il

corrispondente valore di massimo locale.

Poiché cosx2 > 0 allora esiste un intorno I(x2, r) tale che per ogni x ∈ I(x2, r), cos x > 0.

Se x ∈ I(x2, r) e x ≤ x2 allora sinx ≤ sinx2 < −
1

2
ovvero t ≤ −

√
a2 + 4

2a
< −1

2
da cui

t2 ≥ a2 + 4

4a2
=⇒ t2−1

4
≥ 1

a2
, di conseguenza

√
t2 − 1

4
≥ 1

a
e pertanto a−

(
t2 − 1

4

)−1/2
≥ 0

i.e. g′a(t) ≥ 0. Ne segue che per x ∈ I(x2, r) con x ≤ x2 è f ′a(x) ≥ 0, dunque fa è crescente
in (x2 − r, x2).

Se x ∈ I(x2, r) e x ≥ x2 allora −1

2
≥ sinx > sinx2 ovvero −

√
a2 + 4

2a
≤ t < −1

2
da

cui
1

4
< t2 ≤ a2 + 4

4a2
=⇒ 0 < t2 − 1

4
≤ 1

a2
, di conseguenza

√
t2 − 1

4
≤ 1

a
, pertanto

a −

(√
t2 − 1

4

)−1/2
≤ 0 i.e. g′a(t) ≤ 0. Ne segue che per x ∈ I(x2, r) con x ≥ x2 è

f ′a(x) ≤ 0, dunque fa è decrescente in (x2, x2 + r).

Allora x2 è un punto di massimo locale e fa(x2) = −
√
a2 + 4

2
+ log

2 +
√
a2 + 4

2a
è il

corrispondente valore di massimo locale.

Infine la funzione è strettamente crescente in [
7

6
π , x1]∪[

3

2
π , x2] e strettamente decrescente

in [x1,
3

2
π] ∪ [x2,

11

6
π].

(D) Ricerca dei punti di flesso e concavità e/o convessità della funzione

Si noti che f ′′a (x) = g′′a(ϕ(x))ϕ′(x)2 + g′a(ϕ(x))ϕ′′(x) = g′′a(t) cos2 x− g′a(t) sinx cioè

f ′′a (x) = (1− t2)g′′a(t)− tg′a(t) .
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Siccome

g′′a(t) = − d

dt

(
t2 − 1

4

)−1/2
= t

(
t2 − 1

4

)−3/2
si ha

f ′′a (x) = (1− t2)g′′a(t)− tg′a(t) = t(1− t2)
(
t2 − 1

4

)−3/2
− t

[
a−

(
t2 − 1

4

)−1/2]
=

= t(1− t2)
(
t2 − 1

4

)−3/2
− t
(
t2 − 1

4

)−1/2 [
a

(
t2 − 1

4

)1/2

− 1

]
=

= t

(
t2 − 1

4

)−3/2{
1− t2 −

(
t2 − 1

4

)[
a

(
t2 − 1

4

)1/2

− 1

]}
=

= t

(
t2 − 1

4

)−3/2 [
1− t2 − a

(
t2 − 1

4

)3/2

+ t2 − 1

4

]
=

= t

(
t2 − 1

4

)−3/2 [
3

4
− a

(
t2 − 1

4

)3/2
]

Perciò

f ′′a (x) = 0 ⇐⇒ t

(
t2 − 1

4

)−3/2 [
3

4
− a

(
t2 − 1

4

)3/2
]

= 0 .

Poiché per x ∈ [
7

6
π ,

11

6
π], t = sinx < 0, resta

3

4
− a

(
t2 − 1

4

)3/2

= 0 .

Se a = 0 allora f ′′0 (x) < 0, dunque f0 è concava.
Se a 6= 0 allora si ha la soluzione

t1 = −

√
1

4
+

3

√
9

16a2
,

essendo, nel caso in questione, −1 ≤ t ≤ −1

2
.

I punti x3, x4 ∈ [
7

6
π ,

11

6
π] tali che sinx3 = sinx4 = t1, che hanno per immagine

fa(x3) = fa(x4) = −a

√
1

4
+

3

√
9

16a2
+ log

( 9

16a2

)1/6

+

√
1

4
+

3

√
9

16a2

 ,

sono punti di flesso.

Infatti nel dominio di fa è t

(
t2 − 1

4

)−3/2
< 0; inoltre per x ∈ [

7

6
π , x3] ∪ [x4,

11

6
π] è

t1 ≤ t ≤ −1

2
da cui

1

4
≤ t2 ≤ t21 quindi 0 ≤ t2− 1

4
≤
(

3

4a

)2/3

e perciò a

(
t2 − 1

4

)3/2

≤ 3

4
.

Di conseguenza, per a > 0, f ′′a (x) ≤ 0, mentre per a < 0, f ′′a (x) ≥ 0. Pertanto se a > 0,
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fa è concava in [
7

6
π , x3] ∪ [x4,

11

6
π], se a < 0, fa è convessa in [

7

6
π , x3] ∪ [x4,

11

6
π] .

Invece per x ∈ [x3, x4] è −1 ≤ t ≤ t1 da cui t21 ≤ t2 ≤ 1, quindi

(
3

4a

)2/3

≤ t2 − 1

4
che dà

a

(
t2 − 1

4

)3/2

≥ 3

4
. Di conseguenza, per a > 0, f ′′a (x) ≥ 0, mentre per a < 0,

f ′′a (x) ≤ 0. Pertanto se a > 0, fa è convessa in [x3, x4], se a < 0, fa è concava in [x3, x4].

�
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5. Esercizi sulle formule di Taylor e di Mac Laurin

• Sia f derivabile n volte in un punto x0 ∈
◦
D(f), n ∈ N. La formula o lo sviluppo di

Taylor di ordine n di f in x0 è l’espressione

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n +Rn(x;x0)

ovvero

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k +Rn(x;x0) .

Il polinomio di grado n

Pn(x;x0) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k

è detto il polinomio di Taylor di grado n di f in x0 e la funzione Rn(x;x0) è detta il resto
di Taylor di ordine n di f in x0; esso ha la proprietà

lim
x→x0

Rn(x;x0)

(x− x0)n
= 0 ⇐⇒ Rn(x;x0) = o((x− x0)n) .

Si hanno le seguenti rappresentazioni del resto:

• se f è derivabile n+ 1 volte in x0 allora

Rn(x;x0) =

[
f (n+1)(x0)

(n+ 1)!
+ ε(x)

]
(x− x0)n+1

dove lim
x→x0

ε(x) = 0.

• se f : D(f) → R è derivabile n volte in un intorno I(x0, r) e per 0 < δ < r esiste
f (n+1) in (x0, x0+δ), allora per ogni x ∈ (x0, x0+δ) e per ogni funzione ψ continua
in [x0, x], derivabile in (x0, x) con ψ′ 6= 0 esiste ξ ∈ (x0, x) tale che

Rn(x;x0) =
ψ(x)− ψ(x0)

ψ′(ξ)

f (n+1)(ξ)

n!
(x− ξ)n .

In particolare per ψ(y) = x− y si ha il resto nella forma di Cauchy

Rn(x;x0) =
f (n+1)(ξ)

n!
(x− ξ)n(x− x0)

mentre per ψ(y) = (x− y)n+1 si ha il resto nella forma di Lagrange

Rn(x;x0) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1 .

• se f : D(f) → R è di classe Cn+1 in un intorno di x0 allora esiste un intorno
I(x0, ε) nel quale si abbia la rappresentazione integrale

Rn(x;x0) =
1

n!

∫ x

x0

f (n+1)(t)(x− t)n dt .
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• Siano f, g ∈ Cn
(
I(x0, r)

)
per I(x0, r) ⊂ D(f)∩D(g) intorno del punto x0 ∈

◦
D(f) ∩

◦
D(g).

Poiché
(f + g)(k)(x0) = f (k)(x0) + g(k)(x0)

per 0 ≤ k ≤ n, la formula di Taylor di f + g in x0 è dato da

(f + g)(x) =
n∑
k=0

f (k)(x0) + g(k)(x0)

k!
(x− x0)k +Rn(x;x0) =

= Pn,f (x;x0) + Pn,g(x;x0) +Rn(x;x0)

dove Pn,f (x;x0) e Pn,g(x;x0) sono il polinomio di Taylor di ordine n rispettivamente di f e
g in x0. Se f e g sono derivabili n+1-volte in un intorno destro di x0, la rappresentazione
del resto nella forma di Lagrange è

Rn(x;x0) =
(f + g)(n+1)(ξ)

(n+ 1)!
(x− x0)n+1 =

=
f (n+1)(ξ) + g(n+1)(ξ)

(n+ 1)!
(x− x0)n+1 , x0 < ξ < x .

• Sotto le stesse condizioni del caso precedente, poiché

(fg)(k)(x0) =
k∑

m=0

(
k

m

)
f (m)(x0)g

(k−m)(x0)

per 0 ≤ k ≤ n, la formula di Taylor di ordine n di fg in x0 è data da

(fg)(x) =
n∑
k=0

1

k!

(
k∑

m=0

(
k

m

)
f (m)(x0)g

(k−m)(x0)

)
(x− x0)k +Rn(x;x0) .

La rappresentazione del resto nella forma di Lagrange è

Rn(x;x0) =
(fg)(n+1)(ξ)

(n+ 1)!
(x− x0)n+1 =

=
1

(n+ 1)!

(
n+1∑
m=0

(
n+ 1

m

)
f (m)(ξ)g(n−m+1)(ξ)

)
(x− x0)n+1 , x0 < ξ < x .

• Ad esempio se f(x) = (x− x0)g(x) ∈ Cn
(
I(x0, r)

)
, essendo

f (k)(x) = (x− x0)g(k)(x) + kg(k−1)(x)

la formula di Taylor in x0 è

(x− x0)g(x) =
n∑
k=0

kg(k−1)(x0)

k!
(x− x0)k +Rn(x;x0) =

=
n∑
k=0

g(k−1)(x0)

(k − 1)!
(x− x0)k +Rn(x;x0)

dove, se g è derivabile n+ 1 volte in un intorno destro di x0, rappresentando il resto nella
forma di Lagrange, è

Rn(x;x0) =
g(n)(ξ)

n!
(x− x0)n+1 +

g(n+1)(ξ)

(n+ 1)!
(ξ − x0)(x− x0)n+1 , x0 < ξ < x .
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• La formula o lo sviluppo di Mac Laurin di ordine n di una funzione è la formula di
Taylor di ordine n della funzione in x0 = 0. Riportiamo qui di seguito le formule di Mac
Laurin delle funzioni elementari e di alcune funzioni più comuni:

• ex = 1 + x+
x2

2
+ · · ·+ xn

n!
+Rn(x, 0) =

n∑
k=0

xk

k!
+Rn(x, 0)

il cui resto nella forma di Lagrange è

Rn(x; 0) =
eξ

(n+ 1)!
xn+1 , 0 < ξ < x ;

• sinx = x− x3

3!
+
x5

5!
+ · · ·+ (−1)n

(2n+ 1)!
x2n+1 +R2n+2(x; 0) =

=
n∑
k=0

(−1)k

(2k + 1)!
x2k+1 +R2n+2(x; 0) ,

il cui resto nella forma di Lagrange è

R2n+2(x; 0) = (−1)n+1 cos ξ

(2n+ 3)!
x2n+3 , 0 < ξ < x ;

• cosx = 1− x2

2
+
x4

4!
+ · · ·+ (−1)n

(2n)!
x2n +R2n+1(x; 0) =

=
n∑
k=0

(−1)k

(2k)!
x2k +R2n+1(x; 0) ,

il cui resto nella forma di Lagrange è

R2n+1(x; 0) = (−1)n+1 cos ξ

(2n+ 2)!
x2n+2 , 0 < ξ < x ;

• (1 + x)α = 1 +

(
α

1

)
x+

(
α

2

)
x2 + · · ·+

(
α

n

)
xn +Rn(x; 0) =

=
n∑
k=0

(
α

k

)
xk +Rn(x; 0) ,

il cui resto nella forma di Lagrange è

Rn(x; 0) =

(
α

n+ 1

)
(1 + ξ)α−n−1xn+1 , x0 < ξ < x ;

• 1

1− x
= 1 + x+ · · ·+ xn +Rn(x; 0) =

n∑
k=0

xk +Rn(x; 0)

dove, poiché

1− xn+1 = (1− x)
n∑
k=0

xk =⇒
(x 6=1)

1

1− x
=

n∑
k=0

xk +
xn+1

1− x

da cui

Rn(x; 0) =
xn+1

1− x
;
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• log
1

1− x
=

n∑
k=0

xk+1

k + 1
+Rn+1(x; 0)

con il resto dato da

Rn+1(x; 0) =

∫ x

0

tn+1

1− t
dt ;

• log(1 + x) =
n∑
k=0

(−1)k
xk+1

k + 1
+Rn+1(x; 0)

con il resto dato da

Rn+1(x; 0) =

∫ x

0

(−1)n+1tn+1

1 + t
dt ;

queste ultime due formule danno la formula

• 1

2
log

1 + x

1− x
=

n∑
k=0

x2k+1

2k + 1
+

∫ x

0

t2n+2

1− t2
dt ;

• arctanx =
n∑
k=0

(−1)k
x2k+1

2k + 1
+R2n+1(x; 0)

dove

R2n+1(x; 0) = (−1)n+1

∫ x

0

t2n+2

1 + t2
dt ;

• arcsinx =
n∑
k=0

(2k − 1)!!

(2k)!!

x2k+1

2k + 1
+R2n+1(x; 0)

dove6

R2n+1(x; 0) =
(2n+ 1)!!

(2n+ 2)!!
(1 + ξ)−n−3/2

∫ x

0

t2n+2 dt .

• Sia f(x) una funzione derivabile n volte in un punto x0 ∈
◦
D(f) e si supponga che per

t = x− x0 sia nota la formula di Mac Laurin di ordine n della funzione7 g(t) = f(t+ x0),

g(t) = g(0) + g′(0)t+
g′′(0)

2
t2 +

g′′′(0)

3!
t3 + · · ·+ g(n)(0)

n!
tn +Rn(t; 0) .

Poiché x = ϕ(t), per ϕ(t) = t+ x0, con ϕ(0) = x0, ϕ
′(t) = 1, si ha

g(t) = f
(
ϕ(t)

)
= f(x) =⇒ g(0) = f(x0)

g′(t) = f ′
(
ϕ(t)

)
ϕ′(t) = f ′

(
ϕ(t)

)
=⇒ g′(0) = f ′(x0)

g′′(t) = f ′′
(
ϕ(t)

)
ϕ′(t) = f ′′

(
ϕ(t)

)
=⇒ g′′(0) = f ′′(x0)

g′′′(t) = f ′′′
(
ϕ(t)

)
ϕ′(t) = f ′′′

(
ϕ(t)

)
=⇒ g′′′(0) = f ′′′(x0)

...
...

...

g(n)(t) = f (n)
(
ϕ(t)

)
ϕ′(t) = f (n)

(
ϕ(t)

)
=⇒ g(n)(0) = f (n)(x0) .

6(2k)!! := 2 · 4 · · · (2k − 2)(2k) e (2k + 1)!! := 1 · 3 · · · (2k − 1)(2k + 1).
7È ovvio che g(t) è derivabile fino all’ordine n in 0.
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Quindi la formula di Mac Laurin di g(t) diventa

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 +

f ′′′(x0)

3!
(x− x0)3+

+ · · ·+ f (n)(x0)

n!
(x− x0)n +Rn(x;x0)

che è la formula di Taylor di ordine n di f in x0 perché

lim
x→x0

Rn(x;x0)

(x− x0)n
= lim

t→0

Rn(t; 0)

tn
= 0 .

Esercizio 5.1. Determinare la formula di Taylor delle seguenti funzioni nei punti indicati
a fianco di ciascuna di esse:

(1) f(x) =
1

1− x
, x0 6= 1 , (2) f(x) =

x2 + x+ 1

x+ 1
, x0 = 0 .

� Soluzione di (1). Il dominio di f è R\{1} che è aperto e per ogni x 6= 1 si ha

f (k)(x) = k!(1− x)−k−1 , ∀ k ∈ N ,

allora la formula richiesta è

1

1− x
=

n∑
k=0

(x− x0)k

(1− x0)k+1
+Rn(x;x0)

dove, rappresentando il resto nella forma di Lagrange, è

Rn(x;x0) =
(x− x0)n+1

(1− ξ)n+2
, x0 < ξ < x .

Si osservi che

(x− x0)n+1 − (1− x0)n+1 = (x− 1)
n∑
k=0

(x− x0)k(1− x0)n−k

da cui si ricava per x 6= 1

(x− x0)n+1

x− 1
− (1− x0)n+1

x− 1
=

n∑
k=0

(x− x0)k(1− x0)n−k

di conseguenza, con passaggi elementari, si ottiene

1

1− x
=

n∑
k=0

(x− x0)k

(1− x0)k+1
+

(x− x0)n+1

(1− x0)n+1(1− x)

che per paragone con la formula di Taylor scritta sopra dà

Rn(x;x0) =
(x− x0)n+1

(1− x0)n+1(1− x)
.

Soluzione di (2). Il dominio della funzione è (−∞,−1) ∪ (−1,+∞) sul quale f è C∞.
Poiché x2 + x+ 1 = x(x+ 1) + 1 si ha

f(x) = x+
1

x+ 1
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quindi per la formula richiesta basta scrivere la formula di Mac Laurin della funzione
1

x+ 1
. Questa si ottiene dalla formula di Mac Laurin della funzione g(x) =

1

1− x
sosti-

tuendo −x al posto di x, cioè

1

1 + x
=

n∑
k=0

(−x)k +
(−1)n+1xn+1

1 + x
=

n∑
k=0

(−1)kxk +
(−1)n+1xn+1

1 + x
.

Siccome

x+
1

1 + x
= x+

n∑
k=0

(−1)kxk +
(−1)n+1xn+1

1 + x
=

= x+ 1− x+
n∑
k=2

(−1)kxk +
(−1)n+1xn+1

1 + x

la formula richiesto è

x2 + x+ 1

x+ 1
= 1 +

n∑
k=2

(−1)kxk +
(−1)n+1xn+1

1 + x
.

�

Esercizio 5.2. Determinare le formule di Taylor delle seguenti funzioni nei punti a fianco
indicati.

(1) f(x) =
x+ 1

(2 + x)1/2
, x0 =

1

π
, (2) f(x) = 2 cos2 x− coshx , x0 =

1

2
.

� Soluzione di (1). Il dominio della funzione è (−2,+∞) nel quale la funzione f(x) è C∞.

Poiché
1

π
∈ (−2,+∞), ha senso scrivere la formula di Taylor di f(x) in questo punto.

Posto t = x− 1

π
è x = ϕ(t) per ϕ(t) = t+

1

π
, di conseguenza la funzione g(t) = (f ◦ϕ)(t)

è tale che g(ϕ−1(x)) = (f ◦ ϕ)(ϕ−1(x)) = f(ϕ(ϕ−1(x))) = f(x). Basta allora determinare

la formula di Taylor di g nel punto ϕ−1(
1

π
) = 0 essendo ϕ−1(x) = x − 1

π
, ovvero basta

determinare la formula di Mac Laurin della funzione g(t). Si noti che g(t) = (t + a)h(t)
per

a = 1 +
1

π
, h(t) =

1

(t+ a+ 1)1/2
.

Poiché

g(k)(t) =
k∑

m=0

(
k

m

)
(t+ a)(m) h(k−m)(t)

con (t + a)(m) = 0 per m ≥ 2 e (t + a)′ = 1, allora g(k)(t) = (t+ a)h(k)(t) + kh(k−1)(t) da
cui g(k)(0) = ah(k)(0) + kh(k−1)(0). Pertanto la formula di Mac Laurin di g(t) di ordine n
è

g(t) =
n∑
k=0

ah(k)(0) + kh(k−1)(0)

k!
tk +Rn,g(t; 0) =

= a
n∑
k=0

h(k)(0)

k!
tk +

n∑
k=1

h(k−1)(0)

(k − 1)!
tk +Rn,g(t; 0) =
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= aPn,h(t; 0) + tPn−1,h(t; 0) +Rn,g(t; 0)

dove Pn,h(t; 0) indica il polinomio di Taylor di grado n di h nel punto t = 0. Ora

h(t) = (t+ a+ 1)−1/2 = (a+ 1)−1/2
(

1 +
t

a+ 1

)−1/2
= (a+ 1)−1/2(1 + s)−1/2

per s =
t

a+ 1
. Dalla formula di Mac Laurin della funzione (1 + s)−1/2 si ha

h(t) = (a+ 1)−1/2

[
n∑
k=0

(
−1/2

k

)
sk +Rn(s; 0)

]
quindi il polinomio di Taylor di grado n di h(t) in t = 0 è

Pn,h(t; 0) = (a+ 1)−1/2
n∑
k=0

(
−1/2

k

)
tk

(a+ 1)k
=

n∑
k=0

(
−1/2

k

)
tk

(a+ 1)k+1/2
.

Allora

g(t) = a
n∑
h=0

(
−1/2

k

)
tk

(a+ 1)k+1/2
+

n−1∑
k=0

(
−1/2

k

)
tk+1

(a+ 1)k+1/2
+Rn,g(t, 0) =

= a
n∑
k=0

(
−1/2

k

)
tk

(a+ 1)k+1/2
+

n∑
`=1

(
−1/2

`− 1

)
t`

(a+ 1)`−1+1/2
+Rn,g(t; 0) =

=
a

(a+ 1)1/2
+

n∑
k=1

tk

(a+ 1)k+1/2

[(
−1/2

k

)
a+

(
−1/2

k − 1

)
(a+ 1)

]
+Rn,g(t; 0)

dove8 (
−1/2

k

)
a+

(
−1/2

k − 1

)
(a+ 1) =

(
−1/2

k − 1

)( a
2k
− a
)

+

(
−1/2

k − 1

)
(a+ 1) =

=

(
−1/2

k − 1

)( a
2k

+ 1
)

=

(
−1/2

k − 1

)
a+ 2k

2k
.

Dunque la formula di Mac Laurin di g è

g(t) =
1√
a+ 1

(
a+

n∑
k=1

(
−1/2

k − 1

)
a+ 2k

k(a+ 1)k
tk

)
+Rn,g(t; 0) .

Se rappresentiamo il resto di g nella forma di Lagrange si ha

Rn,g(t; 0) =
g(n+1)(η)

(n+ 1)!
tn+1 , 0 < η < t

dove, tenuto conto che

h(k)(t) =

(
−1/2

k

)
k!(t+ a+ 1)−1/2−k ,

8Per ogni α ∈ R è (
α

k

)
=

(
α

k − 1

)
α− k + 1

k
.
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è

Rn,g(t; 0) =
(η + a)h(n+1)(η) + (n+ 1)h(n)(η)

(n+ 1)!
tn+1 =

=

[(
−1/2

n+ 1

)
(η + a)(η + a+ 1)−3/2−n +

(
−1/2

n

)
(η + a+ 1)−1/2−n

]
tn+1 =

=

(
−1/2

n

)(
− 2n+ 1

2(n+ 1)
(η + a) + η + a+ 1

)
(η + a+ 1)−3/2−n tn+1 =

=

(
−1/2

n

)(
η + a

2n+ 2
+ 1

)
(η + a+ 1)−3/2−n tn+1 .

Ne segue che

g(ϕ−1(x)) =
1√
a+ 1

[
a+

n∑
k=1

(
−1/2

k − 1

)
a+ 2k

k(a+ 1)k

(
x− 1

π

)k]
+

+

(
−1/2

n

)(
η + a

2n+ 2
+ 1

)
(η + a+ 1)−3/2−n

(
x− 1

π

)n+1

e posto ξ = η +
1

π
si ottiene la formula richiesta

f(x) =

√
π

2π + 1

1 +
1

π
+

n∑
k=1

(
−1/2

k − 1

) 1 +
1

π
+ 2k

k

(
2 +

1

π

)k (x− 1

π

)k+

+

(
−1/2

n

)(
ξ + 1

2n+ 2
+ 1

)
(ξ + 2)−3/2−n

(
x− 1

π

)n+1

,
1

π
< ξ < x .

�

Esercizio 5.3. Determinare le formule di Mac Laurin delle seguenti funzioni:

(1) f(x) =
x+ 3

x2 − 3x+ 2
, (2) f(x) = 4

√
x− 2 + sin x .

Esercizio 5.4. Scrivere la formula di Mac Laurin con il resto nella forma di Lagrange
per le seguenti funzioni:

(1) f(x) = 4
√
x+ 2 + 3

√
x− 3 , (2) f(x) = |x| sinx .

� Soluzione di (2). La funzione f(x) = |x| sinx è sicuramente continua in R e C∞(R\{0});
verifichiamo se è anche derivabile in tutto R: l’eventuale non derivabilità può essere solo
in 0. Quindi

lim
x→0−

f(x)− f(0)

x
= lim

x→0−

|x| sinx
x

= lim
x→0

−x sinx

x
= 0 ,

lim
x→0+

f(x)− f(0)

x
= lim

x→0+

|x| sinx
x

= lim
x→0

x sinx

x
= 0
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che prova invece la derivabilità di f in 0 .Si osservi che

f ′(x) =



d

dx
(−x sinx) per x < 0

0 per x = 0

d

dx
(x sinx) per x > 0

cioè

f ′(x) =


− sinx− x cosx per x < 0

0 per x = 0

sinx+ x cosx per x > 0
e

lim
x→0−

f ′(x) = − lim
x→0

(sinx+ x cosx) = 0 = f ′(0)

lim
x→0+

f ′(x) = lim
x→0

(sinx+ x cosx) = 0 = f ′(0) .

Quindi f ′ è continua in 0 e di conseguenza f è di classe C1(R). Verifichiamo ora la
derivabilità in 0 di f ′:

lim
x→0−

f ′(x)− f ′(0)

x
= lim

x→0

− sinx− x cosx

x
= − lim

x→0

sinx

x
+ cosx = −2 ,

lim
x→0+

f ′(x)− f ′(0)

x
= lim

x→0

sinx+ x cosx

x
= lim

x→0

sinx

x
+ cosx = 2 .

Dunque f ′ non è derivabile in 0 e f /∈ C2(R); possiamo scrivere solo la formula di Mac
Laurin del I ordine

f(x) = f(0) + f ′(0)x+R1(x; 0) ⇐⇒ |x| sinx = R1(x; 0)

dove, essendo tuttavia f ∈ C2(R\{0}), possiamo rappresentare R1 nella forma di Lagrange
e precisamente, se x < 0 allora per qualche ξ ∈ (x, 0) è

R1(x; 0) =
f ′′(ξ)

2
x2 ⇐⇒ R1(x; 0) =

−2 cos ξ + ξ sin ξ

2
x2 ,

in modo analogo, se x > 0 allora per qualche ξ ∈ (0, x) è

R1(x; 0) =
2 cos ξ − ξ sin ξ

2
x2 .

�

Esercizio 5.5. Scrivere la formula di Mac Laurin del IV ordine con il resto nella forma
di Lagrange per la funzione

f(x) =


1− (x2 + 1)1/2 , x ≥ 0

−1

2
x2 , x < 0 .

Suggerimento. Usare lim
x→0

(1 + x)α − 1

x
= α, per ogni α ∈ R.
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Esercizio 5.6. Scrivere la formula di Taylor del II ordine nei punti x0 = −1 e x0 = 1
per le funzioni

(1) f(x) =
x2 + x+ 1

x+ 1
, (2) f(x) =

x2 − x+ 1

x− 1
.

� Soluzione di (2). Il dominio di f(x) =
x2 − x+ 1

x− 1
è R\{1} e intanto non è possibile

scrivere la formula di Taylor di f in 1. Rimane da scrivere la formula in −1 il quale è

possibile perché f ∈ C∞(R\{1}). Si ha f(−1) = −3

2
e

f ′(x) = (2x− 1)(x− 1)−1 − (x2 − x+ 1)(x− 1)−2 =

= (x− 1)−2
[
(2x− 1)(x− 1)− x2 + x− 1

]
da cui

f ′(x) = (x− 1)−2(x2 − 2x) =⇒ f ′(−1) =
3

4

f ′′(x) = −2(x− 1)−3(x2 − 2x) + (x− 1)−2(2x− 2) =

= (x− 1)−3
[
−2(x2 − 2x) + (x− 1)(2x− 2)

]
da cui

f ′′(x) = 2(x− 1)−3 =⇒ f ′′(−1) = −1

4
.

Allora si ha la formula di Taylor del secondo ordine in −1

x2 − x+ 1

x− 1
= −3

2
+

3

4
(x+ 1)− 1

8
(x+ 1)2 +R2(x;−1) .

Se ad esempio rappresentiamo l’errore nella forma di Lagrange si ha, per qualche ξ ∈
(−1, x) (o ξ ∈ (x,−1)),

R2(x;−1) =
f ′′′(ξ)

3!
(x+ 1)3 ⇐⇒ R2(x;−1) = −(x+ 1)3

(ξ − 1)4

(perché f ′′′(x) = −6(x− 1)−4).

�

Esercizio 5.7. Determinare la formula di Taylor del II ordine con il resto nella forma di
Lagrange per le seguenti funzioni nei punti a fianco indicati:

(1) g(x) =


(x2 − 4)2 log |x− 2| , x 6= 2

0 , x = 2
, in x = 2 ,

(2) h(x) =


(x2 − 9) log |x− 3| , x 6= 3

0 , x = 3
, in x = 3 .
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� Soluzione di (1). Il dominio di g è R ed è di classe C∞(R\{2}). Verifichiamo dapprima
la continuità di g in 2:

lim
x→2

(x2 − 4)2 log |x− 2| = lim
x→2

(x+ 2)2(x− 2)2 log |x− 2| = 0 = g(2) ,

dunque g è continua. Verifichiamo ora la derivabilità di g in 2:

lim
x→2

g(x)− g(2)

x− 2
= lim

x→2

(x2 − 4)2 log |x− 2|
x− 2

=

= lim
x→2

(x+ 2)2(x− 2)2 log |x− 2|
x− 2

= lim
x→2

(x+ 2)2(x− 2) log |x− 2| = 0 .

Di conseguenza g è derivabile in R e

g′(x) =



d

dx
(x2 − 4)2 log(2− x) , x < 2

0 , x = 2

d

dx
(x2 − 4)2 log(x− 2) , x > 2

cioè

g′(x) =


4x(x2 − 4) log(2− x)− (x2 − 4)2(2− x)−1 , x < 2

0 , x = 2

4x(x2 − 4) log(x− 2) + (x2 − 4)2(x− 2)−1 , x > 2

che possiamo scrivere come

g′(x) =


(x2 − 4)[4x log(2− x) + x+ 2] , x < 2

0 , x = 2

(x2 − 4)[4x log(x− 2) + x+ 2] , x > 2 .

È ovvio che g′ ∈ C0(R\{2}), quindi verifichiamo soltanto la continuità di g′ in 2:

lim
x→2−

g′(x) = lim
x→2−

(x2 − 4)[4x log(2− x) + x+ 2] =

= lim
x→2−

4x(x2 − 4) log(2− x) + lim
x→2−

(x2 − 4)(x+ 2) = 0 = g′(2) ,

lim
x→2+

g′(x) = lim
x→2+

(x2 − 4)[4x log(x− 2) + x+ 2] =

= lim
x→2+

4x(x2 − 4) log(x− 2) + lim
x→2+

(x2 − 4)(x+ 2) = 0 = g′(2) .

Perciò g′ ∈ C0(R); vediamo se g′ è derivabile in 2:

lim
x→2−

g′(x)− g′(2)

x− 2
= lim

x→2−

(x2 − 4)[4x log(2− x) + x+ 2]

x− 2
=

= lim
x→2−

(x+ 2)[4x log(2− x) + x+ 2] = −∞ .

Ne segue che g′ non è derivabile in 2 e quindi g non è derivabile due volte in 2: non è
allora possibile scrivere la formula richiesta.

�
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Esercizio 5.8. Scrivere la formula di Mac Laurin delle seguenti funzioni in modo che il
loro valore nei punti indicati sia determinato a meno di un errore di 10−3:

(1) f(x) = cos2 x− arctanx in x =
1

4
,

(2) g(x) =
x+ 1

(x+ 2)1/2
in x =

1

π
.

� Soluzione di (2). Per la g(x) = (x+ 1)(2 + x)−1/2 si ha:

(x+ 1)(2 + x)−1/2 = 2−1/2(x+ 1)
(

1 +
x

2

)−1/2
=

=
1

21/2

[
x
(

1 +
x

2

)−1/2
+
(

1 +
x

2

)−1/2]
.

Posto t =
x

2
è

(
1 +

x

2

)−1/2
= (1 + t)−1/2 =

n∑
k=0

(
−1/2

k

)
tk +Rn(y, 0) =

=
n∑
k=0

(
−1/2

k

)
xk

2k
+Rn

(x
2

; 0
)

dove

Rn

(x
2

; 0
)

=
1

2n+1

(
−1/2

n+ 1

)
(1 + ξ)−n−3/2xn+1 , 0 < ξ <

x

2
.

Pertanto

(x+ 1)(2 + x)−1/2 =
1

21/2

[
n∑
k=0

(
−1/2

k

)
xk+1

2k
+ xRn

(x
2

; 0
)

+

+
n∑
k=0

(
−1/2

k

)
xk

2k
+Rn

(x
2

; 0
)]

dove
n∑
k=0

(
−1/2

k

)
xk+1

2k
=

n∑
k=1

(
−1/2

k − 1

)
xk

2k−1
+

(
−1/2

n+ 1

)
xn+1

2n
,

n∑
k=0

(
−1/2

k

)
xk

2k
= 1 +

n∑
k=1

(
−1/2

k

)
xk

2k
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e poiché Rn(
x

2
; 0) = O(xn+1), xRn(

x

2
; 0) = O(xn+2) si ha9

(x+ 1)(2 + x)−1/2 =
1√
2

{
1 +

n∑
k=1

[
2

(
−1/2

k − 1

)
+

(
−1/2

k

)]
xk

2k
+

+

(
−1/2

n+ 1

)
xn+1

2n
+

(
−1/2

n+ 1

)
(1 + ξ)−3/2−n

xn+1

2n+1

}
=

=
1√
2

+
n∑
k=1

1

2k
√

2

[
2

(
−1/2

k − 1

)
+

(
−1/2

k

)]
xk+

+
1

2n+1
√

2

(
−1/2

n+ 1

)[
2 + (1 + ξ)−3/2−n

]
xn+1.

Risulta allora che il resto n-simo della formula di Mac Laurin di g(x) è

Rn(x; 0) =
1

2n+1
√

2

(
−1/2

n+ 1

)[
2 + (1 + ξ)−n−3/2

]
xn+1 , 0 < ξ <

x

2
;

si vuole che ∣∣∣∣Rn

(
1

π
; 0

)∣∣∣∣ ≤ 10−3

cioè
1

2n+1
√

2

[
2 + (1 + ξ)−n−3/2

] ∣∣∣∣(−1/2

n+ 1

)∣∣∣∣ 1

πn+1
≤ 1

103
.

per 0 < ξ <
1

2π
. Poiché (1+ξ)−n−3/2 < 1 allora 2+(1+ξ)−n−3/2 < 3, inoltre

1

πn+1
<

1

3n+1
.

Perciò basterà scegliere n in modo che sia

1

2n+1
√

2 3n

∣∣∣∣(−1/2

n+ 1

)∣∣∣∣ < 1

103
.

Siccome

(
−1/2

n+ 1

)
=

−1

2

(
−1

2
− 1

)
· · ·
(
−1

2
− n

)
(n+ 1)!

= (−1)n+11 · 3 · · · (2n+ 1)

2n+1(n+ 1)!
=

= (−1)n+1 (2n+ 1)!!

2n+1(n+ 1)!

allora basta scegliere n ∈ N in modo che sia

(2n+ 1)!!√
2 22n+2 3n(n+ 1)!

≤ 1

103
. �

9Infatti per α ∈ R e k ∈ N si ha:(
α

k − 1

)
+

(
α

k

)
=
α(α− 1) · · · [α− (k − 2)]

(k − 1)!
+
α(α− 1) · · · [α− (k − 1)]

k!
=

= α(α− 1) · · · [α− (k − 2)]

[
1

(k − 1)!
+
α− (k − 1)

k!

]
= α(α− 1) · · · (α− k + 2)

(
k + α− k + 1

k!

)
=

=
(α+ 1)α(α− 1) · · · (α− k + 2)

k!
=

(
α+ 1

k

)
.
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Esercizio 5.9. Determinare la formula di Mac Laurin delle seguenti funzioni in modo
che il loro valore nei punti indicati sia dato a meno di un errore non superiore a 10−4:

(1) f(x) = sin2 x

2
− arctanx in x =

2

3
,

(2) g(x) = 2 sin2 x− sinhx in x =
1

2
,

(3) h(x) = cos2 x+ 2 coshx in x =
1

6
.

� Soluzione di (2). La funzione ϕ(x) = sin2 x è C∞ su R e

ϕ′(x) = 2 sinx cosx = sin 2x =⇒ ϕ′(0) = 0

ϕ′′(x) = 2 cos 2x =⇒ ϕ′′(0) = 2

ϕ(3)(x) = −22 sin 2x =⇒ ϕ(3)(0) = 0

ϕ(4)(x) = −23 cos 2x =⇒ ϕ(4)(0) = −23

ϕ(5)(x) = 24 sin 2x =⇒ ϕ(5)(0) = 0

ϕ(6)(x) = 25 cos 2x =⇒ ϕ(6)(0) = 25

...
...

...

da cui facilmente si ricava

ϕ(2k)(x) = (−1)k+122k−1 cos 2x =⇒ ϕ(2k)(0) = (−1)k+122k−1

ϕ(2k+1)(x) = (−1)k22k sin 2x =⇒ ϕ(2k)(0) = 0 .

Si ha allora la formula di Mac Laurin

sin2 x =
n∑
k=0

(−1)k+122k−1

(2k)!
x2k +R2n+1,ϕ(x; 0) .

Per la funzione ψ(x) = sinh x si ha

ψ(2k)(x) = sinh x =⇒ ψ(2k)(0) = 0

ψ(2k+1)(x) = cosh x =⇒ ψ(2k+1)(0) = 1

quindi

sinhx =
n∑
k=0

x2k+1

(2k + 1)!
+R2n+2,ψ(x; 0) .

Pertanto per g(x) si ha

2 sin2 x− sinhx =
n∑
k=0

(−1)k+122kx2k

(2k)!
−

n∑
k=0

x2k+1

(2k + 1)!
+ 2R2n+1,ϕ(x; 0)

dove

|2R2n+1,ϕ(x; 0)| =
∣∣∣∣2 ϕ(2n+2)(ξ)

(2n+ 2)!
x2n+2

∣∣∣∣ =

∣∣∣∣2 22(n+1)−1 cos 2ξ

(2n+ 2)!
x2n+2

∣∣∣∣ =

=

∣∣∣∣22n+2 cos 2ξ

(2n+ 2)!
x2n+2

∣∣∣∣ ≤ 22n+2

(2n+ 2)!
|x|2n+2 .



96 Elisabetta Barletta

Siccome in x =
1

2
deve essere

∣∣∣∣2R2n+1,ϕ(
1

2
; 0)

∣∣∣∣ ≤ 10−4, si ha∣∣∣∣2R2n+1,ϕ(
1

2
; 0)

∣∣∣∣ ≤ 22n+2

(2n+ 2)!

1

22n+2
=

1

(2n+ 2)!
,

basta scegliere n ∈ N in modo che sia (2n+ 2)! ≥ 104, e.g. n = 6.

�

Esercizio 5.10. Determinare la formula di Mac Laurin del III ordine con la rappresen-
tazione dell’errore nella forma di Cauchy per le seguenti funzioni:

(1) f(x) = (2 + 2x)−1/3 , (2) g(x) =
x2 − 3x

2x+ x2
.

Esercizio 5.11. Determinare la formula di Mac Laurin del III ordine con la rappresen-
tazione dell’errore nella forma di Lagrange per le seguenti funzioni:

(1) h(x) = tan2 x− 3x2 , (2) k(x) =
2x+ 1

x2 − x
.

Esercizio 5.12. Scrivere la formula di Mac Laurin e di Taylor in x = 3 del IV ordine
con il resto in forma integrale della funzione

`(x) =
3x3 − 2x2 − 5x+ 6

x2 − 2x− 3
.
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6. Esercizi sui numeri complessi

Esercizio 6.1. Verificare che per ogni a, b, α, β ∈ R il numero complesso

(a+ bi)eα−βi + (a− bi)eα+βi

è reale.

Esercizio 6.2. Provare che se z, w ∈ C sono tali che |z + w| = |z − w| allora arg z =
π

2
+ argw.

Esercizio 6.3. Che relazione intercorre tra z e w ∈ C affinché sia

Arg
z + w

z − w
=
π

2
?

Esercizio 6.4. Determinare la forma algebrica e polare dei seguenti numeri complessi

(1) (2− 2i)4 , (2)
(√

6 +
√

2 + i(
√

6−
√

2
)3

.

Esercizio 6.5. Determinare la forma polare e algebrica dei numeri complessi

(1) (32i)1/5 , (2) 11/6 .

Esercizio 6.6. Determinare la forma polare di

(1)
4

√
−4− 4

√
3i , (2)

3

√
(1− i)5

1 + i
.

Esercizio 6.7. Determinare la forma algebrica dei numeri complessi

(1)

(
(i− 1)4

i

)1/3

, (2)
[
(
√

3 + 7i)(
√

3 + i)
]1/4

.

Esercizio 6.8. Sia t =
√

3 + 7i, w =
√

3 + i e z = −2i. Determinare la forma algebrica
e polare di

t+
zw

z + w
.

Esercizio 6.9. Determinare la forma algebrica e polare dei seguenti numeri complessi

(1)
i−
√

3

(1− i)7
, (2)

1 +
√

3i

(−
√

3− i)10
.

Esercizio 6.10. In C risolvere le seguenti equazioni

(1) (1 + i)3z4 = 1 , (2) z3 + 64 = 0 .

Esercizio 6.11. In C risolvere le seguenti equazioni

(1) |z|2 +
√

3(=mz)i = 4− 3i , (2) |z −
√

2| =

{
|z −
√

6|
|z +
√

6|
.



98 Elisabetta Barletta

Esercizio 6.12. In R2 determinare i seguenti insiemi:

(1); {z ∈ C : |z − 2| ≤ 4} , (2) {z ∈ C : Arg z =
3

4
π} ,

(3) {z ∈ C :

∣∣∣∣z − 1

z + 1

∣∣∣∣ = 4} , (4) {z ∈ C : |z + 1| = 1

2
|(2=mz + 1)i|} .

Esercizio 6.13. Determinare i valori di λ ∈ R per cui

(1) l’equazione λz2 − 2z + 1 = 0 ha radici complesse coniugate di modulo 1

(2) l’equazione λz2 − 2z + 1 = 0 ha radici complesse coniugate di modulo
1

2
(3) l’equazione z4 − 2λz2 + 4 = 0 non ha radici reali.

Esercizio 6.14. Determinare i valori di λ ∈ C affinché siano risolubili i seguenti sistemi
lineari

(1)

{
λ2x− y = 0

|λ|x+ y − 1− λ2 = 0
, (2)

{
λ2x+ y = 1 + λ2

x+ λ2y = λ(1 + λ2)
.

Esercizio 6.15. Risolvere in C le seguenti equazioni

(1) z4 − 2iz2 − 1− (1 + i)2 = 0 , (2) z6 + z3 + 1 = 0 ,

(3) 2z6 + 2z3 + 1 = 0 .

Esercizio 6.16. Determinare la forma algebrica dei numeri complessi

5− i
2− i

,
4− 2i

3− 4i
, 2 + 3i+ (2 + 3i)(1− 3i) .

Esercizio 6.17. Trovare z ∈ C tale che sommato al doppio del suo coniugato dia 5− 3i.

Esercizio 6.18. Rappresentare in forma polare i numeri complessi 3,
√

2, 4 + 4i, 6
√
−1,

11/6, (−1)1/3, 3
√
−i, i−1/3.

Esercizio 6.19. In C risolvere le equazioni

z2 + 2z + i = 0 , z |z| − 2z − 1 = 0 , z2 + zz = 1 + 2i , z3 − 6z + 4 = 0 .

Esercizio 6.20. Determinare i valori di λ ∈ R per cui tutte le soluzioni dell’equazione
z4 − 2z2 + λ = 0 non siano reali.

� Soluzione. Poniamo w = z2 ∈ C, quindi l’equazione diventa w2− 2w+ λ = 0. Poiché10

b2 − 4ac

4a2
=

4− 4λ

4
= 1− λ ∈ R

10Se az2 + bz + c = 0, per a, b, c ∈ C, allora le sue soluzioni sono

z = − b

2a
±
√
r(cos

θ

2
+ i sin

θ

2
) per r =

∣∣∣∣b2 − 4ac

4a2

∣∣∣∣ , θ = Arg

(
b2 − 4ac

4a2

)
.
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le soluzioni dell’equazione sono

w = 1±
√
|1− λ|

(
cos

Arg(1− λ)

2
+ i sin

Arg(1− λ)

2

)
dove in tal caso |1−λ| è il valore assoluto del numero reale 1−λ e Arg(1−λ) = 0 se 1−λ ≥ 0
e Arg(1− λ) = π se 1− λ < 0. Per λ = 1 è w = 1 e pertanto l’equazione z4− 2z2 + λ = 0
ha le due soluzioni reali (ciascuna di molteplicità due) z = ±1. Se 1− λ > 0 (i.e. λ < 1)
allora w = 1±

√
1− λ ∈ R, di conseguenza l’equazione z4−2z2+λ = 0 ha tutte radici non

reali se 1±
√

1− λ < 0 ovvero se in contemporanea è
√

1− λ < −1 e
√

1− λ > 1. Poiché
la prima è falsa, nel caso λ < 1 l’equazione z4 − 2z2 + λ = 0 ha almeno una soluzione

reale. Infine se 1−λ < 0 (i.e. λ > 1) allora w = 1±
√
λ− 1(cos

π

2
+ i sin

π

2
) = 1± i

√
λ− 1

e le soluzioni dell’equazione dell’esercizio sono tutte complesse, date da z0, z0, −z0, −z0
per z0 =

√
λ(cos θ + i sin θ) con θ =

arctan
√
λ− 1

2
.

In conclusione l’equazione z4 − 2z2 + λ = 0, per λ ∈ R, ha tutte soluzioni non reali per
λ > 1.

�

Osservazione 6.1. È noto che per x ∈ R si ha

eix = cosx+ i sinx , e−ix = cosx− i sinx

da cui si ricava

(6.1) cosx =
eix + e−ix

2
, sinx =

eix − e−ix

2i
.

I secondi membri della (6.1) hanno senso anche per z ∈ C, quindi definiamo il coseno e il
seno di un numero complesso z ∈ C come

cos z :=
eiz + e−iz

2
, sin z :=

eiz − e−iz

2i
.

Esercizio 6.21. Verificare che per z ∈ C
(1) cos(z + 2kπ) = cos z, sin(z + 2kπ) = sin z, ∀ k ∈ Z;
(2) cos2 z + sin2 = 1;
(3) cos 2z = cos2 z − sin2 z, sin 2z = 2 sin z cos z;

(4) cos
z

2
=

(
1 + cos z

2

)1/2

, sin
z

2
=

(
1− cos z

2

)1/2

.

� Soluzione di (1). Si ha

cos(z + 2kπ) =
ei(z+2kπ) + e−i(z+2kπ)

2
=
eizei2kπ + e−ize−i2kπ

2
=

=
eiz + e−iz

2
= cos z ,

sin(z + 2kπ) =
ei(z+2kπ) − e−i(z+2kπ)

2i
=
eizei2kπ − e−ize−i2kπ

2i
=

=
eiz − e−iz

2i
= sin z .
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Soluzione di (2). Si ha

cos2 z + sin2 z =
1

4

[(
eiz + e−iz

)2 − (eiz − e−iz)2] =

=
1

4

[
e2iz + 2 + e−2iz −

(
e2iz − 2 + e−2iz

)]
=

=
1

4

(
e2iz + 2 + e−2iz − e2iz + 2− e−2iz

)
= 1 .

Soluzione di (3). Si ha

cos2 z − sin2 z =
(eiz + e−iz)

2

4
+

(eiz − e−iz)2

4
=

=
e2iz + 2 + e−2iz + e2iz − 2 + e−2iz

4
=

=
2e2iz + 2e−2iz

4
=
e2iz + e−2iz

2
= cos 2z ,

2 sin z cos z = 2
eiz − e−iz

2i

eiz + e−iz

2
=
e2iz − e−2iz

2i
= sin 2z .

Soluzione di (4). Si ha

1 + cos z

2
=

1

2

(
1 +

eiz + e−iz

2

)
=

2 + eiz + e−iz

4
=

=
2 + e2i z/2 + e−2i z/2

4
=

(
ei z/2 + e−i z/2

)2
4

= cos2
z

2
,

1− cos z

2
=

1

2

(
1− eiz + e−iz

2

)
=

2− eiz − e−iz

4
=

2− e2i z/2 − e−2i z/2

4
=

= −
(
ei z/2 − e−i z/2

)2
4

= sin2 z

2
di conseguenza

cos
z

2
=

(
1 + cos z

2

)1/2

, sin
z

2
=

(
1− cos z

2

)1/2

.

�
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7. Esercizi sugli integrali indefiniti

Premettiamo una breve ricapitolazione delle sostituzioni da fare in alcuni tipi di integrali
classici.

Integrazione di funzioni razionali fratte

• Si consideri l’integrale

I =

∫
dx

ax2 + bx+ c

dove ∆ = b2 − 4ac < 0. La sostituzione

t =
2ax+ b

2Aa
permette di scrivere

I =

∫
Adt

aA2 (t2 + 1)
=

1

aA
arctan t+ C

ovvero ∫
dx

ax2 + bx+ c
=

2√
−∆

arctan

(
2ax+ b√
−∆

)
+ C .

• Si consideri l’integrale

I =

∫
p(x)

q(x)
dx , p(x), q(x) polinomi in x .

(i) gr(p(x)) < gr(q(x)),

q(x) = a(x− x1)m1 · · · (x− xh)mh(a1x
2 + b1x+ c1)

n1 · · · (akx2 + bkx+ ck)
nk ,

con ∆j = b2j − 4ajcj < 0, 1 ≤ j ≤ k, si decompone

p(x)

q(x)
=

h∑
i=1

Ai
x− xi

+
k∑
j=1

[
Bj

ajx2 + bjx+ cj
+

Cj(2ajx+ bj)

ajx2 + bjx+ cj

]
+

+
d

dx

(
s(x)∏h

i=1(x− xi)mi−1
∏k

j=1(ajx
2 + bjx+ cj)nj−1

)
.

Quindi

I =
h∑
i=1

Ai log |x− xi|+
k∑
j=1

2Bj√
−∆j

arctan

(
2ajx+ bj√
−∆j

)
+

+
k∑
j=1

Cj log(ajx
2 + bjx+ cj)+

+
s(x)

h∏
i=1

(x− xi)mi−1
k∏
j=1

(ajx
2 + bjx+ cj)

nj−1

+ C .

(ii) gr(p(x)) ≥ gr(q(x)): si esegue la divisione tra p(x) e q(x) ottenendo

p(x) = m(x)q(x) + r(x) , gr(r(x)) < gr(q(x))
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quindi

I =

∫
p(x)

q(x)
dx =

∫
m(x) dx+

∫
r(x)

q(x)
dx

e l’integrale

∫
r(x)

q(x)
dx si risolve come in (i).

Integrali trigonometrici

• Si consideri l’integrale

I =

∫
R(cosx, sinx) dx ;

la sostituzione

t = tan
x

2
dà

cosx =
1− t2

1 + t2
, sinx =

2t

1 + t2
, ϕ′(t) =

2

1 + t2
.

Queste riconducono l’integrale dato all’integrale di una funzione razionale fratta.

Integrali abeliani

• Si consideri l’integrale

I =

∫
R(x,

√
1− x2) dx

con la sostituzione

t =

√
1− x
1 + x

ci si riconduce ad un integrale di una funzione razionale fratta.

• Si consideri l’integrale

I =

∫
R(x,

√
x2 + a) dx

con la sostituzione

(t+ x)2 = x2 + a , a ∈ R
ci si riconduce all’integrale di una funzione razionale fratta

• Si consideri l’integrale

I =

∫
R(x,

√
ax2 + bx+ c) dx .

Se a > 0 si considera la sostituzione

t =
2ax+ b

2
√
a

.

Se a < 0 si considera la sostituzione

t =
−2ax− b√

∆
.
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In ogni caso si è ricondotti all’integrale di una funzione razionale fratta.

Integrale differenziale binomio

• Si consideri l’integrale

(7.1) Im,n,p =

∫
xm(a+ bxn)p dx

con m,n, p ∈ Q. Questo è risolubile se almeno uno tra p,
m+ 1

n
, p+

m+ 1

n
è intero. Le

sostituzioni da fare sono:

• Se p ∈ Z si considera la sostituzione

t = x1/s1s2 per m =
r1
s1
, n =

r2
s2
.

• Se p ∈ Q\Z, scritto p =
r

s
, si considerano due casi:

(i)
m+ 1

n
∈ Z: si prende

t = (a+ bxn)1/s ,

(ii) p+
m+ 1

n
∈ Z: si prende

t = xn, u =

(
a+ bt

t

)1/s

.

In ogni caso si è ricondotti all’integrale di una funzione razionale fratta.

Esercizi

Esercizio 7.1. Calcolare i seguenti integrali indefiniti

(1)

∫
sinhx dx , (2) coshx dx .

� Soluzione di (1). L’integrale è immediato e∫
sinhxdx = coshx+ C .

Soluzione di (2). Come per (1),∫
coshx dx = sinhx+ C .

�

Esercizio 7.2. Calcolare i seguenti integrali:

(1)

∫
x4/5 dx , (2)

∫
x2
√
x3 + 5 dx .
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Esercizio 7.3. Calcolare i seguenti integrali

(1)

∫
x
√

6 + x2 dx , (2)

∫
(x+ 1)(x2 + 2x− 5)6/7 dx .

Esercizio 7.4. Calcolare

(1)

∫
sin3 x cos4 x dx , (2)

∫
x4 log x dx .

Esercizio 7.5. Calcolare

(1)

∫
sin log x dx , (2)

∫
arcsinx dx .

Esercizio 7.6. Calcolare i seguenti integrali

(1)

∫
arccosx dx , (2)

∫
1√
x
dx .

Esercizio 7.7. Calcolare i seguenti integrali

(1)

∫
6

x−4/5
dx , (2)

∫
4 sinhx dx .

Esercizio 7.8. Calcolare

(1)

∫
3x

x2 − 3x+ 2
dx , (2)

∫
2x+ 1

x2 − 3x+ 3
dx .

Esercizio 7.9. Calcolare

(1)

∫
1√

1− x2
dx , (2)

∫
2√

x2 − 1
dx .

Esercizio 7.10. Calcolare

(1)

∫
1

e−x/3
dx , (2)

∫
cos 2x

sinx cosx
dx .

Esercizio 7.11. Calcolare gli integrali

(1)

∫
(3x+ 1)2/3 dx , (2)

∫
(4x− 9)5 dx .

Esercizio 7.12. Calcolare gli integrali

(1)

∫
1

sin2 x
dx , (2)

∫
5

cos2 x
dx .

Esercizio 7.13. Calcolare gli integrali

(1)

∫
3

sinx
dx , (2)

∫
3

cosx
dx .
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Esercizio 7.14. Calcolare i seguenti integrali

(1)

∫ √
π

1 + tan2 x
dx , (2)

∫
1√

1− x2 arcsinx
dx .

Esercizio 7.15. Calcolare

(1)

∫
arcsinx√

1− x2
dx , (2)

∫
arcsin4 x√

1− x2
dx .

Esercizio 7.16. Risolvere i seguenti integrali:

(1) l

∫
arcsin−4/7 x√

1− x2
dx , (2)

∫
sin(1−

√
x)

2
√
x

dx .

Esercizio 7.17. Risolvere gli integrali:

(1)

∫
2 + sin x

(sinx− cosx)3
dx , (2)

∫
x4 sinx dx .

Esercizio 7.18. Risolvere

(1)

∫
e4x cosx dx , (2)

∫ √
x log x dx .

Esercizio 7.19. Risolvere gli integrali:

(1)

∫
x3 + 1

x3 + 3x2 − 4
dx , (2)

∫
x3 − 1

x3 + 3x2 − 4
dx .

Esercizio 7.20. Risolvere gli integrali

(1)

∫
x2 + x+ 1

(2x+ 3)2(3x− 1)
dx , (2)

∫
4x− 3

(2x2 − 3x+ 2)3
dx .

Esercizio 7.21. Risolvere

(1)

∫
x3 − x2 + x− 1

(2x2 − 3x+ 2)2
dx , (2)

∫
tanx

1− sinx
dx .

Esercizio 7.22. Calcolare gli integrali

(1)

∫
sinx

1 + cos x
dx , (2)

∫
cosx

1 + cos x
dx .

Esercizio 7.23. Calcolare gli integrali

(1)

∫
sinx

1 + sin x
dx , (2)

∫ √
a− x2 dx , a > 0 .

Esercizio 7.24. Trovare le formule iterative per

In =

∫
sinn x dx , Jn =

∫
cosn x dx ,

dove n ∈ N.
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Esercizio 7.25. Trovare le formule iterative per

In =

∫
ex sinn x dx , Jn =

∫
ex cosn x dx ,

dove n ∈ N\{0}.

Esercizio 7.26. Determinare, in funzione di m,n ∈ N\{0}, la soluzione dell’integrale

Im,n =

∫
sinm x cosn x dx .

Esercizio 7.27. Calcolare i seguenti integrali:

(1)

∫
x3

(x4 + 1)2
dx , (2)

∫
x3 − 1

(x4 + 1)2
dx .

Esercizio 7.28. Calcolare:

(1)

∫
x2 + x− 1

(2x+ 1)2(x2 + 2x+ 2)
dx , (2)

∫
dx

x+
√

1− x2
.

Esercizio 7.29. Calcolare

(1)

∫ √
x2 + 5 dx , (2)

∫
x+ 1√
x2 − 2

dx .

Esercizio 7.30. Calcolare

(1)

∫
x√

x2 + 11
dx , (2)

∫
x− 1

1−
√
x2 − 3x+ 2

dx .

Esercizio 7.31. Risolvere gli integrali

(1)

∫ √
−x2 + x− 1 dx , (2)

∫ √
−x2 + x+ 1 dx ,

(3)

∫
(x+ 2)

√
x2 + 4x+ 3 dx .

Esercizio 7.32. Trovare la formula iterativa per

In =

∫
dx

(x2 − 1)n
,

per n ∈ N.

� Soluzione. Si ha

per n = 0 , I0 =

∫
dx = x+ c , c ∈ R

per n = 1 , I1 =

∫
dx

x2 − 1
= log

√∣∣∣∣x− 1

x+ 1

∣∣∣∣+ c , c ∈ R

perché
1

x2 − 1
=

A1

x− 1
+

A2

x+ 1
=⇒ A1 = −A2 =

1

2
.
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Sia n ≥ 2 e decomponiamo

(7.2)
1

(x2 − 1)n
=

1− x2 + x2

(x2 − 1)n
=

x2

(x2 − 1)n
− 1

(x2 − 1)n−1

dove ∫
x2

(x2 − 1)n
dx =

1

2

∫
2x

(x2 − 1)n
x dx =

=
per parti

1

2

(
(x2 − 1)−n+1

1− n
x− 1

1− n

∫
(x2 − 1)−n+1 dx

)
=

=
1

2− 2n

x

(x2 − 1)n−1
− 1

2− 2n
In−1 .

Allora integrando la (7.2) si ottiene

In =
1

2− 2n

x

(x2 − 1)n−1
− 1

2− 2n
In−1 − In−1

ovvero la formula iterativa

(7.3) In =
1

2− 2n

x

(x2 − 1)n−1
− 3− 2n

2− 2n
In−1 .

�

Esercizio 7.33. Trovare la formula iterativa per

Jn =

∫
dx

(x2 + 1)n
,

per n ∈ N.

� Soluzione. Si ha

per n = 0 , J0 =

∫
dx = x+ c , c ∈ R

per n = 1 , J1 =

∫
dx

x2 + 1
= arctanx+ c , c ∈ R .

Sia n ≥ 2 e decomponiamo

(7.4)
1

(x2 + 1)n
=

1 + x2 − x2

(x2 + 1)n
=

1

(x2 + 1)n−1
− x2

(x2 + 1)n

dove ∫
x2

(x2 + 1)n
dx =

1

2

∫
2x

(x2 + 1)n
x dx =

=
per parti

1

2

(
(x2 + 1)−n+1

1− n
x− 1

1− n

∫
(x2 + 1)−n+1 dx

)
=

=
1

2− 2n

x

(x2 + 1)n−1
− 1

2− 2n
Jn−1 .
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Allora integrando la (7.4) si ottiene

Jn = Jn−1 −
1

2− 2n

x

(x2 + 1)n−1
+

1

2− 2n
Jn−1

ovvero la formula iterativa

(7.5) Jn =
3− 2n

2− 2n
Jn−1 −

1

2− 2n

x

(x2 + 1)n−1
.

�

Esercizio 7.34. Sia a ∈ R. Trovare la formula iterativa per

Ia,n =

∫
dx

(x2 − a2)n
, Ja,n =

∫
dx

(x2 + a2)n
.

� Soluzione per Ia,n.

per n = 0 , Ia,0 =

∫
dx = x+ c , c ∈ R

per n = 1 , Ia,1 =

∫
dx

x2 − a2
=

1

2a
log

∣∣∣∣x− ax+ a

∣∣∣∣+ c , c ∈ R .

Sia n ≥ 2, posto t =
x

a
si ha

Ia,n =
1

a2n

∫
dx[(x

a

)2
− 1

]n =
1

a2n

∫
a

(t2 − 1)n
dt =

1

a2n−1
In

Applicando allora la formula iterativa (7.3) si ottiene

Ia,n =
1

a2n−1

(
1

2− 2n

t

(t2 − 1)n−1
− 3− 2n

2− 2n
In−1

)
ovvero, essendo Ia,n−1 =

1

a2n−3
In−1, a conti fatti, si ha la formula iterativa

(7.6) Ia,n =
1

(2− 2n)a2

[
x

(x2 − a2)n−1
− (3− 2n)Ia,n−1

]
.

Soluzione per Ja,n.

per n = 0 , Ja,0 =

∫
dx = x+ c , c ∈ R

per n = 1 , Ja,1 =

∫
dx

x2 + a2
=

1

a
arctan

x

a
+ c , c ∈ R .

Sia n ≥ 2, posto t =
x

a
si ha

Ja,n =
1

a2n

∫
dx[(x

a

)2
+ 1

]n =
1

a2n

∫
a

(t2 + 1)n
dt =

1

a2n−1
Jn
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Applicando allora la formula iterativa (7.5) si ottiene

Ja,n =
1

a2n−1

(
3− 2n

2− 2n
Jn−1 −

1

2− 2n

t

(t2 + 1)n−1

)
ovvero, essendo Ja,n−1 =

1

a2n−3
Jn−1, a conti fatti, si ha la formula iterativa

(7.7) Ja,n =
1

(2− 2n)a2

[
(3− 2n)Ja,n−1 −

x

(x2 + a2)n−1

]
.

�

Esercizio 7.35. Siano a, b, c ∈ R. Trovare la formula iterativa per

Kn =

∫
dx

(ax2 + bx+ c)n
.

� Soluzione. Sia t = 2ax+ b, allora

ax2 + bx+ c = a

(
x2 +

b

a
x+

c

a

)
= a

[(
x+

b

2a

)2

− b2 − 4ac

4a2

]
=

=
1

4a
[(2ax+ b)2 −∆] =

1

22a
(t2 −∆) .

Pertanto integrando per sostituzione si ha:

Kn = 22n−1an−1
∫

dt

(t2 −∆)n
.

Se ∆ > 0, posto ∆ = A2 si ottiene

Kn = 22n−1an−1IA,n =⇒ IA,n =
1

22n−1an−1
Kn

che dalla (7.6) dà

Kn =
22n−1an−1

(2− 2n)A2

[
t

(t2 − A2)n−1
− (3− 2n)IA,n−1

]
=

=
22n−1an−1

(2− 2n)∆

[
2ax+ b

[(2ax+ b)2 −∆]n−1
− 3− 2n

22n−3an−2
Kn−1

]
ovvero, essendo (2ax+ b)2 −∆ = 4a(ax2 + bx+ c), si ha la formula iterativa

(7.8) Kn =
1

(1− n)∆

[
2ax+ b

(ax2 + bx+ c)n−1
− 2a(3− 2n) Kn−1

]
.

Se invece ∆ < 0, posto ∆ = −A2 si ottiene

Kn = 22n−1an−1JA,n =⇒ JA,n =
1

22n−1an−1
Kn

che dalla (7.7) dà

Kn =
22n−1an−1

(2− 2n)A2

[
(3− 2n)JA,n−1 −

t

(t2 + A2)n−1

]
=

= − 22n−1an−1

(2− 2n)∆

[
3− 2n

22n−3an−2
Kn−1 −

2ax+ b

[(2ax+ b)2 −∆]n−1

]
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ovvero (essendo sempre (2ax+ b)2 −∆ = 4a(ax2 + bx+ c)), si ha la formula iterativa

(7.9) Kn =
1

(1− n)∆

[
2ax+ b

(ax2 + bx+ c)n−1
− 2a(3− 2n) Kn−1

]
.

Si osservi che la (7.8) e la (7.9) sono la stessa formula.

�

Esercizio 7.36. Calcolare i seguenti integrali

(1)

∫
x2

(x2 − 3)3
dx , (2)

∫
x+ 1

(x2 + 2)4
dx .

Esercizio 7.37. Calcolare

(1)

∫
dx

(x2 + 2x+ 2)2
, (2)

∫
x2

(x2 − 3)3/2
dx .

Esercizio 7.38. Calcolare

(1)

∫
x2(x2 − 3)3/2 dx , (2)

∫
x5√
x3 + 6

dx .

Esercizio 7.39. Calcolare i seguenti integrali:

(1)

∫
x7

(3 + 2x)1/2
dx , (2)

∫
x3

(3 + 2x5)3/2
dx ,

(3)

∫
x3(3x2 + 5)5/2 dx .
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8. Esercizi sugli integrali generalizzati

Esercizio 8.1. Verificare l’eventuale convergenza dei seguenti integrali generalizzati:

(1)

∫ +∞

3

dx

x log x
, (2)

∫ +∞

1

sinx

x(x3 − log x)
dx .

� Soluzione di (1). Si ha

lim
x→+∞

xα
1

x log x
=

{
+∞ se α > 1

0 se 0 < α ≤ 1 ,

quindi il criterio per la convergenza degli integrali impropri del tipo

∫ +∞

a

f(x) dx è inef-

ficace. Usando allora la definizione di questo integrale generalizzato si ha:∫ +∞

3

dx

x log x
= lim

b→+∞

∫ b

3

dx

x log x
= lim

b→+∞

∫ b

3

1/x

log x
dx =

= lim
b→+∞

log | log x|
∣∣∣b
3

= lim
b→+∞

(log log b− log log 3) = +∞

quindi l’integrale diverge.

Soluzione di (2). Si ha

lim
x→+∞

sinx

x(x3 − log x)
= lim

x→+∞

sinx

x4
(

1− log x

x

) = 0

per cui la funzione integranda è infinitesima per x→ +∞. Inoltre

lim
x→+∞

xα sinx

x(x3 − log x)
= lim

x→+∞

xα sinx

x4
(

1− log x

x

) = 0

se 0 < α < 4: in particolare questo vale per α = 3 > 1 e, dal criterio della convergenza

per gli integrali del tipo

∫ +∞

a

f(x) dx, l’integrale dato converge.

�

Esercizio 8.2. Verificare la convergenza dei seguenti integrali ed eventualmente calcolarli:

(1)

∫ +∞

2

dx

(x− 1)3
, (2)

∫ +∞

1

x

x4 + 1
dx .

Esercizio 8.3. Verificare la convergenza di

(1)

∫ +∞

−∞

x+ 5

(x2 + 3)2
dx , (2)

∫ −1
−∞

sinx

x
dx .

� Soluzione di (2). Poiché la funzione sinx è limitata (pur non avendo limite per x →
−∞), si ha

lim
x→−∞

sinx

x
= 0
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e

lim
x→−∞

|x|α sinx

x
= − lim

x→−∞
|x|α sinx

|x|
=

= − lim
x→−∞

|x|α−1 sinx =

{
non esiste se α ≥ 1

0 se 0 < α < 1 .

Quindi il criterio per la convergenza degli integrali impropri del tipo

∫ a

−∞
f(x) dx è inef-

ficace. Integrando per parti si ottiene:

lim
b→−∞

∫ −1
b

sinx

x
dx = lim

b→−∞
−cosx

x

∣∣∣∣−1
b

−
∫ −1
−∞

cosx

x2
dx =

= cos 1 + lim
b→−∞

cos b

b
−
∫ −1
−∞

cosx

x2
dx = cos 1−

∫ −1
−∞

cosx

x2
dx .

Ora

lim
x→−∞

|x|α cosx

x2
= lim

x→−∞
|x|α−2 cosx = 0

se α − 2 < 0, i.e. per α < 2. Scelto allora un qualsiasi valore 1 < α < 2 (ad esempio

α =
3

2
), dal criterio per la convergenza degli integrali impropri del tipo

∫ a

−∞
f(x) dx,

l’integrale ∫ −1
−∞

cosx

x2
dx

converge e quindi converge anche l’integrale improprio dato.

�

Esercizio 8.4. Verificare la convergenza di

(1)

∫ +∞

1

√
x sinx2 dx , (2)

∫ +∞

1

dx

xα
, α ∈ R .

Esercizio 8.5. Verificare la convergenza di

(1)

∫ +∞

5

dx

x2 log x
, (2)

∫ +∞

0

x+ 1

(2
√
x+ 7)8/5

dx .

� Soluzione di (1). Si ha

lim
x→+∞

xα
1

x2 log x
= lim

x→+∞

1

x2−α log x
=

{
0 se 0 < α ≤ 2

+∞ se α > 2 .

Scelto ad esempio α = 2 > 1, dal criterio per la convergenza degli integrali del tipo∫ +∞

a

f(x) dx, l’integrale dato converge.

Esercizio 8.6. Verificare la convergenza degli integrali impropri:

(1)

∫ +∞

0

dx

(2
√
x+ 7)8/5

, (2)

∫ +∞

0

dx

(2
√
x+ 7)8/3

.
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Esercizio 8.7. Verificare l’eventuale convergenza degli integrali impropri:

(1)

∫ 1

−∞

2x− 1

(1− x5)4 + 3
dx , (2)

∫ 1

−∞

dx

(1− x5)4 + 3
.

Esercizio 8.8. Quali dei seguenti integrali diverge?

(1)

∫ +∞

1

x− 3

x3 − log x
dx , (2)

∫ 1

−∞

(
−1 + ex

−1/3
)
dx .

� Soluzione di (1). Si ha

lim
x→+∞

x− 3

x3 − log x
= lim

x→+∞

x

(
1− 3

x

)
x3
(

1− log x

x3

) = 0

quindi la funzione integranda è infinitesima per x→ +∞ e inoltre

lim
x→+∞

xα
(x− 3)

x3 − log x
= lim

x→+∞

xα+1

(
1− 3

x

)
x3
(

1− log x

x3

) = 1

se α + 1 = 3 ovvero per α = 2 > 1. L’integrale converge dal criterio per la convergenza

degli integrali impropri del tipo

∫ +∞

a

f(x) dx.

Soluzione di (2). Scritto x−1/3 =
1
3
√
x

abbiamo

lim
x→−∞

(
−1 + ex

−1/3
)

= lim
x→−∞

(
e1/

3√x − 1
)

=
y= 1

3√x

lim
y→0−

(ey − 1) = 0

per cui la funzione integranda −1 + ex
−1/3

è infinitesima per x→ −∞; inoltre

lim
x→−∞

|x|α
(
ex
−1/3 − 1

)
= lim

x→−∞
|x|α

(
e1/

3√x − 1
)

=

=
y= 1

3√x

lim
y→0−

ey − 1

|y3|α
= lim

y→0−

ey − 1

|y|3α
= −1

se 3α = 1, ovvero la funzione integranda è infinitesima di ordine α =
1

3
< 1 e questo

non permetterebbe di concludere sul comportamento dell’integrale generalizzato dato.

Tuttavia, per x < 0, è
1
3
√
x
< 0, perciò e1/

3√x < 1. Dunque la funzione integranda è una

funzione infinitesima per x→ −∞ di ordine < 1 di segno costante (negativo) e pertanto
l’integrale diverge.

�

Esercizio 8.9. Calcolare i seguenti integrali impropri

(1)

∫ +∞

5

dx

x logn x
, n ∈ N\{0} , (2)

∫ 0

−∞

3x+ 1

x3 + 4
dx .
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Esercizio 8.10. Calcolare i seguenti integrali

(1)

∫ +∞

0

dx

x4 + 1
, (2)

∫ +∞

0

log x

x2 + 3
dx ,

(3)

∫ +∞

0

dx√
1− x4

.

� Soluzione di (2). L’integrale è generalizzato sia perché l’intervallo di integrazione è
superiormente illimitato sia perché la funzione integranda è un infinito per x → 0+.
Tuttavia è facile provare che la funzione integranda, per x → +∞, è infinitesima di
ordine superiore ad ogni α, 1 < α < 2, mentre per x→ 0+ è un infinito di ordine inferiore
ad ogni α, 0 < α < 1. Quindi l’integrale converge e avremo∫ +∞

0

log x

x2 + 3
dx =

1

3

∫ +∞

0

log x

x2

3
+ 1

dx =
t= x√

3

√
3

3

∫ +∞

0

log
√

3 t

t2 + 1
dt =

=

√
3

3

(∫ +∞

0

log
√

3

t2 + 1
dt+

∫ +∞

0

log t

t2 + 1
dt

)
=

=

√
3

3
log
√

3

∫ +∞

0

dt

t2 + 1
+

√
3

3

∫ +∞

0

log t

t2 + 1
dt .

Si ha ∫ +∞

0

dt

t2 + 1
= lim

b→+∞

∫ b

0

dt

t2 + 1
= lim

b→+∞
arctan t

∣∣∣b
0

= lim
b→+∞

arctan b =
π

2
.

Per calcolare il secondo integrale poniamo dapprima s = arctan t da cui t = tan s e quindi
dt = (1 + tan2 s) ds. Allora∫ +∞

0

log t

t2 + 1
dt =

∫ π
2

0

log tan s

tan2 s+ 1
(1 + tan2 s) ds =

∫ π
2

0

log tan s ds =

=

∫ π
2

0

log sin s ds−
∫ π

2

0

log cos s ds .

Ora, posto u =
π

2
− s, si ha ds = −du e cos s = cos(

π

2
− u) = sinu, da cui∫ π

2

0

log cos s ds = −
∫ 0

π
2

log sinu du =

∫ π
2

0

log sinu du .

Sostituendo si ottiene:∫ +∞

0

log t

t2 + 1
dt =

∫ π
2

0

log sin s ds−
∫ π

2

0

log sin s ds = 0 .

In conclusione ∫ +∞

0

log x

x2 + 3
dx =

√
3 π

6
log
√

3 .
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Esercizio 8.11. Verificare l’eventuale convergenza dei seguenti integrali generalizzati:

(1)

∫ +∞

−∞
sinx2 dx , (2)

∫ +∞

−∞
cosx2 dx .

� Soluzione di (1). Si ha∫ +∞

−∞
sinx2 dx =

∫ 0

−∞
sinx2 dx+

∫ +∞

0

sinx2 dx = 2

∫ +∞

0

sinx2dx

perché in ogni caso x2 ∈ [0,+∞). Ora∫
sinx2 dx =

1

2

∫
sin t√
t
dt

avendo considerato la sostituzione x2 = t, quindi∫ +∞

0

sinx2 dx =
1

2

(∫ 1

0

sin t√
t
dt+

∫ +∞

1

sin t√
t
dt

)
.

Siccome ∣∣∣∣sin t√t
∣∣∣∣ ≤ 1√

t
l’integrale generalizzato ∫ 1

0

sin t√
t
dt

converge. Si ha poi∫ +∞

1

sin t√
t
dt = lim

b→+∞

∫ b

1

sin t√
t
dt = lim

b→+∞

(
−cos t

t1/2

∣∣∣∣b
1

− 1

2

∫ b

1

cos t

t3/2
dt

)
=

= lim
b→+∞

(
−cos b

b1/2
+ cos 1− 1

2

∫ b

1

cos t

t3/2
dt

)
dove

lim
b→+∞

cos b

b1/2
= 0 e lim

b→+∞

∫ b

1

cos t

t3/2
dt =

∫ +∞

1

cos t

t3/2
dt .

Poiché ∣∣∣∣cos t

t3/2

∣∣∣∣ ≤ 1

t3/2

con
1

t3/2
integrabile in senso generalizzato in [1,+∞), si ottiene che l’integrale∫ +∞

1

cos t

t3/2
dt

converge. Pertanto, poiché∫ +∞

1

sin t√
t
dt = − lim

b→+∞

cos b

b1/2
+ cos 1− 1

2

∫ +∞

1

cos t

t3/2
dt = cos 1− 1

2

∫ +∞

1

cos t

t3/2
dt ,

l’integrale

∫ +∞

1

sin t√
t
dt converge. In conclusione l’integrale (1) converge.

Soluzione di (2). Si risolve come (1) appena svolto.
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�

Esercizio 8.12. Sia a > 0. Determinare per quali valori di u, v > 0 convergono gli
integrali generalizzati

(1)

∫ +∞

a

xu sinxv dx , (2)

∫ +∞

a

xu cosxv dx .

� Soluzione di (1). La funzione integranda f(x) = xu sinxv non ha singolarità in [a,+∞)
per a > 0. Integrando per parti si ottiene∫ +∞

a

xu sinxv dx = −1

v
lim
b→+∞

[
(xu−v+1 cosxv)

∣∣∣b
a

+
u− v + 1

v

∫ b

a

cosxv

xv−u
dx

]
=

= −1

v
lim
b→+∞

(
bu−v+1 cos bv − au−v+1 cos av +

u− v + 1

v

∫ b

a

cosxv

xv−u
dx

)
dove

lim
b→+∞

bu−v+1 cos bv

{
non esiste se u− v + 1 ≥ 0

= 0 se u− v + 1 < 0

Resta perciò soltanto il caso u− v + 1 < 0 i.e. v − u > 1. Inoltre

lim
b→+∞

∫ b

a

cosxv

xv−u
dx =

∫ +∞

a

cosxv

xv−u
dx

dove ∣∣∣∣cosxv

xv−u

∣∣∣∣ ≤ 1

|x|v−u
, v − u > 1 .

Quindi l’integrale generalizzato ∫ +∞

a

cosxv

xv−u
dx

converge. Ne segue che, per u− v + 1 < 0,∫ +∞

a

xu sinxv dx = −1

v
lim
b→+∞

bu−v+1 cos bv +
au−v+1

v
cos av − u− v + 1

v2

∫ +∞

a

cosxv

xv−u
dx =

=
au−v+1

v
cos av − u− v + 1

v2

∫ +∞

a

cosxv

xv−u
dx

per cui in conclusione se u, v > 0 allora l’integrale generalizzato (1) converge per v−u > 1.

Soluzione di (2). Si precede esattamente come per la soluzione di (1) appena svolta.

�

Esercizio 8.13. Studiare la convergenza dell’integrale∫ +∞

0

dx

ax2 + bx+ c

al variare di a, b, c ∈ R.
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Esercizio 8.14. Sia a > 0. Studiare la convergenza dell’integrale∫ +∞

a

xm sinn x dx

al variare di m,n ∈ N.

Esercizio 8.15. Calcolare i seguenti integrali:

(1)

∫ 2

1

dx√
4− x2

, (2)

∫ 3

−3
log(9− x2) dx .

Soluzione di (2). La funzione integranda è definita per x ∈ (−3, 3), inoltre per tali valori
di x è 3− x > 0, 3 + x > 0, e quindi log(9− x2) = log(3− x) + log(3 + x). Dunque∫

log(9− x2) dx =

∫
log(3− x) dx+

∫
log(3 + x) dx =

= (3− x)[1− log(3− x)] + (3 + x)[log(3 + x)− 1] + C

perché∫
log(3− x) dx =

t=3−x
−
∫

log t dt = t− t log t+ C = (3− x)[1− log(3− x)] + C ,∫
log(3 + x) dx =

t=x+3

∫
log t dt = t log t− t+ C = (3 + x)[log(3 + x)− 1] + C .

Allora, poiché lim
x→3−

log(9− x2) = −∞ = lim
x→−3+

log(9− x2) si ha∫ 3

−3
log(9− x2) dx =

∫ 0

−3
log(9− x2) dx+

∫ 3

0

log(9− x2) dx

dove ∫ 0

−3
log(9− x2) dx = lim

a→−3+

∫ 0

a

log(9− x2) dx =

= lim
a→−3+

{3(1− log 3) + 3(log 3− 1)− (3− a)[1− log(3− a)]−

−(3 + a)[log(3 + a)− 1]} =

= − lim
a→−3+

{(3− a)[1− log(3− a)] + (3 + a)[log(3 + a)− 1]} =

= 6(log 6− 1)− lim
a→−3+

(3 + a)[log(3 + a)− 1] = 6(log 6− 1) ,∫ 3

0

log(9− x2) dx = lim
a→3−

∫ a

0

log(9− x2) dx =

= lim
a→3−

{(3− a)[1− log(3− a)] + (3 + a)[log(3 + a)− 1]−

−3(1− log 3)− 3(log 3− 1)} =

= lim
a→3−

(3− a)[1− log(3− a)] + 6(log 6− 1) = 6(log 6− 1) .

Pertanto ∫ 3

−3
log(9− x2) dx = 12(log 6− 1) .

�
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Esercizio 8.16. Calcolare gli integrali

(1)

∫ 1

−1

dx

x
, (2)

∫ 1
2

0

dx

x log x
.

Esercizio 8.17. Calcolare gli integrali

(1)

∫ 1

0

1 + cos x

(1− x3)4/3
dx , (2)

∫ 1

0

2− 2 cosx−
√
x

x
dx .

Esercizio 8.18. Calcolare

(1)

∫ 2

0

dx

(x− 1)2/3
, (2)

∫ 2

0

log(2− x)

(2− x)3
dx .

Esercizio 8.19. Divergono i seguenti integrali?

(1)

∫ 2

0

dx

x3 sinx
, (2)

∫ 1
2

0

dx

x logn x
, n ∈ N \ {0} .

Esercizio 8.20. Quali dei seguenti integrali converge?

(1)

∫ 1

0

dx√
1− x

, (2)

∫ 4

0

x+ 1

x1/2
dx .

Esercizio 8.21. Verificare l’eventuale convergenza di

(1)

∫ π

0

dx

1− cos2 x
, (2)

∫ 2
3
π

0

dx

1 + 2 cosx
.

Esercizio 8.22. Verificare la convergenza di

(1)

∫ 1

−3

x+ 2

(x2 − 2x+ 1)(x+ 3)2/3
dx , (2)

∫ 1

0

dx√
1− x4

.

Esercizio 8.23. Sia α > 0. Studiare la convergenza dell’integrale

Γ(α) =

∫ +∞

0

xα−1e−x dx .

La funzione Γ(α), α > 0, sopra definita si chiama integrale di Eulero di seconda specie
(o funzione Gamma di Eulero o anche Gamma euleriana).

Esercizio 8.24. Dimostrare che

(i) Γ1) = 1,
(ii) Γ(α + 1) = αΓ(α), e di conseguenza

(iii) Γ(n+ 1) = n! per ogni n ∈ N \ {0}.

Esercizio 8.25. Calcolare i seguenti integrali

(1)

∫ +∞

0

x3e−x dx , (2)

∫ +∞

0

x5/2e−x dx .
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Esercizio 8.26. Calcolare i seguenti integrali

(1)

∫ − 1
2

−1

dx

(x+ 1) log(x+ 1)
, (2)

∫ 5
2

2

dx

(x− 2) log3(x− 2)
,

(3)

∫ 3

2

2x+ 1

x3 − 3x2 + 4
dx , (4)

∫ 1

0

x+ 1

(x+ 2)
√
x− 1

dx ,

(5)

∫ 2

1

2x2 − x− 1

x2 + x− 2
dx , (6)

∫ 0

−
√
2

x+ 1

(x2 − 2)2
dx ,

(7)

∫ +∞

1

dx

(x2 + 4x+ 5)3
, (8)

∫ 0

−∞

1− x2

x3 − 5x2 + 3x+ 9
dx ,

(9)

∫ 3
2
π

π
2

1− sinx

x− π
dx , (10)

∫ π
2

0

x

1− cosx
dx ,

(11)

∫ 1

−3

√
x2 + 2x− 3

x+ 3
dx , (12)

∫ +∞

−∞

x2 + 1

x4 + 1
dx .
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9. Esercizi sulle equazioni differenziali del I ordine

Premettiamo una breve ricapitolazione per la risoluzione di alcuni tipi di equazioni
differenziali del I ordine.

• Equazione differenziale ordinaria:

y′(x) = f(x) ,

con f ∈ C1(A), A ⊆ R un intervallo. Per ogni fissato x0 ∈ A, la soluzione è

y(x) = y(x0) +

∫ x

x0

f(t)dt .

• Equazione differenziale ordinaria a variabili separabili (o separate):

y′(x) = a(x)b(y(x)) ,

con a ∈ C0(A), b ∈ C0(B) per A,B ⊆ R intervalli.
Se l’equazione numerica b(y) = 0 ha una soluzione y0 allora la funzione costante

y(x) = y0

è soluzione dell’equazione differenziale.
Se b(y) non è identicamente nulla allora, per ogni fissato x0 ∈ A, le soluzioni y(x) si
ricavano da ∫ y(x)

y(x0)

1

b(t)
dt =

∫ x

x0

a(s) ds .

• Equazione differenziale lineare omogenea del I ordine:

y′(x) + a(x)y(x) = 0 ,

per a ∈ C0(A), A ⊆ R un intervallo. Per ogni fissato x0 ∈ A, le soluzioni sono

y(x) = y(x0) e
−

∫ x
x0
a(s) ds

.

• Equazione differenziale lineare affine del I ordine:

y′(x) + a(x)y(x) = b(x) ,

per a, b ∈ C0(A), A ⊆ R un intervallo. Per ogni fissato x0 ∈ A, le soluzioni sono

y(x) = y(x0) e
−

∫ x
x0
a(s) ds

+

∫ x

x0

b(t) e
∫ t
x a(s) ds dt .

• Equazione differenziale di Bernoulli:

y′(x) + a(x)y(x) = b(x)yn(x) ,

per a, b ∈ C0(A), A ⊆ R un intervallo. Per ogni fissato x0 ∈ A, le soluzioni sono

y(x) =

[
y1−n(x0) e

(n−1)
∫ x
x0
a(s) ds

+ (1− n)

∫ x

x0

b(t) e(1−n)
∫ t
x a(s) ds dt

]1/(1−n)
.

• Equazione differenziale di Riccati:

y′(x) + a(x)y(x) = b(x)y2(x) + c(x) ,
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per a, b, c ∈ C0(A), A ⊆ R un intervallo. Determinata una soluzione particolare ŷ(x) si
pone z(x) = y(x) − ŷ(x) e sostituendo nell’equazione differenziale y(x) = z(x) + ŷ(x), si
ottiene l’equazione differenziale di Bernoulli con n = 2,

z′(x) + [a(x)− 2b(x)ŷ(x)]z(x) = b(x)z2(x)

la quale risolta, permette di determinare y(x) = z(x) + ŷ(x).

• Equazioni differenziali del tipo y′ = f
( ax+ by + c

a1x+ b1y + c1

)
,

con a, b, c, a1, b1, c1 ∈ R, a1x+ b1y + c1 6= 0, f ∈ c0(A), A ⊆ R un intervallo.

Caso (1). det

[
a b

a1 b1

]
6= 0. Si considera il sistema lineare{

X = ax+ by + c

Y = a1x+ b1y + c1

da cui, risolvendo, si ottiene {
x = AX +BY + C

y = A1X +B1Y + C1

con A,B,C,A1, B1, C1 ∈ R e Y = Y (X). Allora

dx

dX
= A+BY ′ ,

dy

dX
= A1 +B1Y

′ , Y ′ =
dY

dX
.

L’equazione differenziale data diventa

A1 +B1Y
′

A+BY ′
= f

(X
Y

)
che generalmente si risolve ponendo T =

Y

X
.

Caso (2). det

[
a b

a1 b1

]
= 0. Si pone t = ax + by, t = t(x), ottenendo l’equazione

differenziale
t′ − a
b

= f
( t+ c

λt+ c1

)
.

• Equazione differenziale di Clairaut:

y(x) = xy′(x) + g(y′(x)) ,

per g ∈ C1(B), B ⊆ R un intervallo. Per derivazione si ottiene

y′′(x)
[
x+ g′

(
y′(x)

)]
= 0 .

Ogni funzione y(x) = ax+b è soluzione. Per t = y′ si ha la soluzione in forma parametrica{
x = −g′(t)
y = −t g′(t) + g(t) .

• Equazione differenziale di D’Alembert-Lagrange:

y(x) = xf(y′(x)) + g(y′(x)) ,
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per f, g ∈ C1(B), B ⊆ R un intervallo, f e g non contemporaneamente costanti. Derivando
rispetto a x e posto t = y′, si ottiene, per11 xf ′(t) + g′(t) 6= 0,

t′ =
t− f(t)

xf ′(t) + g′(t)
.

Se t′ = 0 allora le funzioni y(x) = ax + b sono soluzioni. Se t′ 6= 0, dove t è invertibile si

ha t′ =
1

x′(t)
da cui l’equazione differenziale affine del primo ordine

x′(t) +
f ′(t)

f(t)− t
x(t) =

g′(t)

t− f(t)

che permette di determinare x in funzione del parametro t e dunque dall’equazione dif-
ferenziale iniziale, si ha la soluzione parametrica{

x = x(t)

y = x(t)f(t) + g(t) .

• Equazione differenziale di Manfredi:

y′(x) = ϕ(x, y(x))

con ϕ : R2 → R è una funzione di due variabili reali, continua e omogenea di grado 0.

Ponendo t =
y

x
e differenziando rispetto a x si ottiene y′ = t+ xt′ da cui xt′ = f(t)− t

che dà l’equazione differenziale a variabili separabili

t′(x) =
f(t(x))− t(x)

x

la cui soluzione t(x) permette di ricavare y(x) = xt(x).

Esercizi sulle equazioni differenziali del I ordine

Esercizio 9.1. Risolvere le equazioni differenziali ordinarie

(1) y′ = 3x2 − 5x+ 10 , (2) y′ = tanx+ x .

Esercizio 9.2. Risolvere le equazioni differenziali a variabili separabili

(1) y′ = 4y2 − y + 7 , (2) y′ =
√

2 y2 + 2y +
√

2 .

Esercizio 9.3. Risolvere le equazioni differenziali a variabili separabili

(1) y′ = (3y − 2)x4 , (2) (x3 + 1)y′ = (x− 1)(y2 + y + 1) .

Esercizio 9.4. Risolvere le equazioni differenziali a variabili separabili

(1) (2x2 − x+ 1)y′ = (x2 + 2x− 1)(y3 − 1) ,

(2) (x2 + 2x− 1)y′ = (2x2 − x+ 1)(y3 + 1) .

11Se xf ′(t) + g′(t) = 0 allora l’equazione differenziale è di Clairaut.
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Esercizio 9.5. Risolvere le equazioni differenziali

(1) y′ +
1

x2
y = 0 , (2) y′ = sinx cos y ,

(3) y′ =
log x

y
, (4) y′ + 2xy = 0 , (5) y′ = x2y3 .

Esercizio 9.6. Risovere le seguenti equazioni differenziali lineari affini:

(1) y′ − 1

1− x
y − x = 0 , (2) y′ − y tanx = sinx cos2 x .

Esercizio 9.7. Risolvere le equazioni differenziali lineari affini:

(1) y′ + 2xy = x3 , (1) y′ + (x2 + x)y = (x2 + x)(x3 +
3

2
x2 + 1) .

Esercizio 9.8. Risolvere le seguenti equazioni differenziali

(1) y′ +
6x

3x2 − 1
y =

1

−1 + 3x2
, (2) y′ − y sinx = sinx .

Esercizio 9.9. Risolvere le seguenti equazioni differenzaili del I ordine:

(1) yy′ + 2x5 = 0 , (2) y2y′ + x3 = 0 .

Esercizio 9.10. Risolvere le equazioni differenziali del I ordine:

(1) xy′ = −y +
x2ex

4y3
, (2) xy′ = y +

x3ex

4y2
.

Esercizio 9.11. Risolvere le equazioni differenziali del I ordine

(1) y′ =
−x+ y − 1

x+ y − 1
, (2) y′ =

(
x− y + 1

2x− 2y + 1

)2

.

� Soluzione di (1). Posto {
X = −x+ y + 1

Y = x+ y − 1

il determinante del sistema è ∣∣∣∣∣−1 1

1 1

∣∣∣∣∣ = −2 6= 0

da cui si ricava 
x = −1

2
X +

1

2
Y

y =
1

2
X +

1

2
Y + 1

=⇒


dx

dX
= −1

2
+

1

2
Y ′

dy

dX
=

1

2
+

1

2
Y ′
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dove Y ′ =
dY

dX
. Poiché

y′ =

dy

dX
dx

dX

=
Y ′ + 1

Y ′ − 1
,

l’equazione differenziale (1) diventa

Y ′ + 1

Y ′ − 1
=
X

Y
⇐⇒ Y ′ =

X + Y

X − Y
.

Posto T =
Y

X
si ricava Y ′ = XT ′ + T da cui

XT ′ = −T +
1 + T

1− T
⇐⇒ T ′ =

1

X

T 2 + 1

1− T
.

Posto A(X) =
1

X
e B(T ) =

T 2 + 1

1− T
si ha l’equazione differenziale a variabili sepa-

rabili T ′ = A(X)B(T ) ovvero

T ′(X)

B(T (X))
= A(X) da cui

∫ X

X0

T ′(S)

B(T (S))
dS =

∫ X

X0

A(S) dS

per X0 = −x0 + y(x0) + 1. Poiché dT = T ′(S) dS si ha∫ T (X)

T (X0)

dT

B(T )
=

∫ X

X0

A(S) dS

dove ∫ T (X)

T (X0)

dT

B(T )
=

∫ T (X)

T (X0)

1− T
1 + T 2

dT =

∫ T (X)

T (X0)

dT

1 + T 2
−
∫ T (X)

T (X0)

T

1 + T 2
dT =

= arctanT (X)− 1

2
log
(
1 + T (X)2

)
−
[

arctanT (X0)−
1

2
log
(
1 + T (X0)

2
)]
,∫ X

X0

A(S) dS =

∫ X

X0

1

S
dS = log |X| − log |X0| .

Pertanto se C ′0 = arctanT (X0)−
1

2
log
(
1 + T (X0)

2
)
− log |X0| allora si ha

arctanT (X)− 1

2
log
(
1 + T (X)2

)
= log |X|+ C ′0

da cui

arctan
Y

X
− 1

2
log

X2 + Y 2

X2
= log |X|+ C0 ⇐⇒

⇐⇒ arctan
Y

X
− log

√
X2 + Y 2 + log |X| = log |X|+ C0

con costante C0 = arctan
Y (X0)

X0

− log
√
X2

0 + Y (X0)2. La soluzione dell’equazione dif-

ferenziale è allora espressa in forma implicita da

arctan
x+ y − 1

−x+ y + 1
− log

√
2x2 + 2y2 − 4x+ 2 + C = 0
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per C ∈ R costante dipendente dalle condizioni iniziali x0, y(x0).

Esercizio 9.12. Risolvere le seguenti equazioni differenziali del I ordine:

(1) y′ =
3x+ 2y − 1

−x+ 2y − 3
, (2) y′ =

x− y + 3

2x− 2y + 1
.

Esercizio 9.13. Risolvere le equazioni differenziali

(1) x2y′ = x3 + y , (2) x2y′ = x2 − xy + y2 .

Esercizio 9.14. Risolvere

(1) y′ + xy = x2y3 , (2) xy′ = (y − x)3 + y .

Esercizio 9.15. Risolvere le seguenti equazioni differenziali

(1) y′ +
y

x2
=

2

x3
, (2) y′ +

x

x+ 1
y = x2 − 1 ,

(3) y′ +
4x

x2 + 1
y = 3x2 + x+ 1 , (4) y′ − 1

1− x
y = x ,

(5) y′ − y tanx = sinx cos2 x .
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10. Esercizi sulle equazioni differenziali a coefficienti costanti di
ordine n ≥ 2

Premettiamo anche qui una breve ricapitolazione per la risoluzione dell’equazioni dif-
ferenziali del tipo

(10.1) y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = b(x)

aj ∈ R, 0 ≤ j ≤ n− 1. Sia S lo spazio delle soluzioni dell’equazione differenziale (10.1) e
y0(x) una soluzione particolare di (10.1); considerato il polinomio caratteristico di grado
n

p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

associato all’equazione differenziale lineare omogenea

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + aoy = 0 ,

se

• p(λ) ha n radici reali e distinte λ1, · · ·λn allora

S =

{
y ∈ Cn(A) : y = y0 +

n∑
j=1

cj e
λjx, cj ∈ R, 1 ≤ j ≤ n

}
.

• p(λ) ha radici reali distinte λ1, · · · , λk, k < n, ma una di esse ha molteplicità, ad
esempio λk ha molteplicità mk (2 ≤ mk ≤ n), allora

S =

{
y ∈ Cn(A) : y = y0 +

k∑
j=1

cj e
λjx +

mk−1∑
h=1

ckh x
h eλkx ,

cj, ckh ∈ R, 1 ≤ j ≤ k, 1 ≤ h ≤ mk − 1

}
.

• p(λ) ha una radice complessa semplice, ad esempio λn = αn + iβn, allora

S =

{
y ∈ Cn(A) : y = y0 +

n−1∑
j=1

cj e
λjx + c1n e

αnx cos βn x + c2n e
αnx sin βnx ,

cj, c1n, c2n ∈ R, 1 ≤ j ≤ n− 1

}
.

• p(λ) ha una radice complessa con molteplicità, ad esemio λk = αk + iβk con
molteplicità mk allora,

S =

{
y ∈ Cn(A) : y = y0 +

k−1∑
j=1

cj e
λjx+

+

mk−1∑
h=0

(
c1kh x

h eαk cos βk x + c2kh x
j eαkx sin βkx

)
,

cj, c1kh, c2kh ∈ R, 1 ≤ j ≤ k − 1, 1 ≤ h ≤ mk − 1

}
.
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Una soluzione particolare y0(x) per l’equazione differenziale (10.1) si può determinare nei
modi seguenti12.

(1) Il dato b(x) è un polinomio di grado r
• se a0 6= 0 allora ricerchiamo

y0(x) = brx
r + br−1x

r−1 · · ·+ b1x+ b0 ;

• se a0 = a1 = · · · = am−1 = 0 e am 6= 0 allora ricerchiamo

y0(x) = xm(brx
r + br−1x

r−1 · · ·+ b1x+ b0) .

(2) Il dato b(x) è multiplo della funzione f(x) = ekx, per k ∈ R
• k non è radice del polinomio caratteristico p(λ) allora ricerchiamo

y0(x) = c ekx ;

• k è radice di p(λ) con molteplicità m ≥ 1 allora ricerchiamo

y0(x) = c xmekx .

(3) Il dato b(x) è il prodotto di un polinomio di grado r e di ekx

• k non è radice del polinomio caratteristico, allora ricerchiamo

y0(x) = ekx(b0 + b1x+ · · ·+ brx
r) ;

• k è radice del polinomio caratteristico con molteplicità m ≥ 1, allora ricer-
chiamo

y0(x) = xmekx(b0 + b1x+ · · ·+ brx
r) .

(4) Il dato b(x) è una combinazione lineare delle funzioni f(x) = cos kx e g(x) = sin kx,
per k ∈ R
• ik non è radice del polinomio caratteristico allora ricerchiamo

y0(x) = α cos kx+ β sin kx .

(5) Il dato b(x) non rientra nei casi precedenti
• si usa il metodo della variazione delle costanti. Si determinano n soluzioni

linearmente indipendenti u1, · · · , un dell’equazione differenziale omogenea e
scritta la sua generica soluzione u(x) =

∑n
j=1 cjuj(x), per cj ∈ R, ricerchiamo

y0(x) =
n∑
j=1

cj(x)uj(x)

12Usando il principio di identità dei polinomi o l’indipendenza lineare delle funzioni una volta sostituito
y0 e le sue derivate in (10.1).
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dove le funzioni incognite cj(x), 1 ≤ j ≤ n, si determinano risolvendo il
sistema di equazioni differenziali del I ordine

n∑
j=1

c′j(x)uj(x) = 0

...

n∑
j=1

c′j(x)u
(n−2)
j (x) = 0

n∑
j=1

c′j(x)u
(n−1)
j (x) = b(x) .

Esercizio 10.1. Risolvere le seguenti equazioni differenziali omogenee del secondo ordine
a coefficienti costanti

(1) y′′ + y = 0 , (2) y′′ − 2y′ − 3y = 0 .

� Soluzione di (1). Il polinomio caratteristico è p(λ) = λ2 + 1 che ha le due radici
complesse e coniugate λ1 = i, λ1 = −i. Pertanto le soluzioni della 1) sono le funzioni
y ∈ C∞(R) date da

y(x) = c1 cosx+ c2 sinx , c1, c2 ∈ R .

Soluzione di (2). Il polinomio caratteristico è p(λ) = λ2 − 2λ− 3, dove
∆

4
= 4, quindi

le sue radici sono λ1 = −1, λ2 = 3. I generatori delle soluzioni dell’equazione differenziale
2) sono cos̀ı le funzioni u1(x) = e−x, u2(x) = e3x, per cui tali soluzioni sono le funzioni
y ∈ C∞(R)

y(x) = c1e
−x + c2e

3x , c1, c2 ∈ R .

�

Esercizio 10.2. Risolvere le seguenti equazioni differenziali omogenee del III ordine a
coefficienti costanti

(1) y′′′ + 2y′ + 3y = 0 , (2) y′′′ − 2y′′ − y′ + 2y = 0 .

� Soluzione di (1). Il polinomio caratteristico è p(λ) = λ3 + 2λ + 3. Osserviamo che
p(−1) = 0, dunque λ1 = −1 è una radice (reale) di p(λ). Per determinare le altre
radici operiamo la divisione tra p(λ) e il monomio λ + 1 ottenendo cos̀ı λ3 + 2λ + 3 =
(λ+ 1)(λ2 − λ+ 3) dove, per il trinomio di II grado, è ∆ = −11. Ne segue che p(λ) ha le
due radici complesse e coniugate

λ2 =
1

2
+ i

√
11

2
, λ2 =

1

2
− i
√

11

2
.

I generatori delle soluzioni sono dunque

u1(x) = e−x , u2(x) = ex/2 cos

√
11

2
x , u3(x) = ex/2 sin

√
11

2
x
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per cui le generiche soluzioni dell’equazione differenziale 1) sono le funzioni y ∈ C∞(R)

y(x) = c1 e
−x + c2 e

x/2 cos

√
11

2
x+ c3 e

x/2 sin

√
11

2
x , c1, c2, c3 ∈ R .

Esercizio 10.3. Risolvere le seguenti equazioni differenziali omogenee del V ordine a
coefficienti costanti

(1) y(5) − 5y(4) − 9y′ + 45y = 0 , (2) y(5) − 5y(4) + 7y′′′ − 3y′′ = 0 .

� Soluzione di (1). Il polinomio caratteristico è p(λ) = λ5 − 5λ4 − 9λ + 45 che si
decompone in p(λ) = (λ − 5)(λ4 − 9). Le sue radici sono λ1 = 5, λ2 =

√
3, λ3 =

−
√

3, λ4 =
√

3 i, λ5 = −
√

3 i = λ4, tutte semplici. Pertanto le soluzioni dell’equazione
differenziale omogenea proposta sono

y(x) = c1e
5x + c2e

√
3x + c3e

−
√
3x + c4 cos

√
3x+ c5 sin

√
3x , ci ∈ R, 1 ≤ i ≤ 5 .

Soluzione di (2). Il polinomio caratteristico è p(λ) = λ5 − 5λ4 + 7λ3 − 3λ2 = λ2(λ3 −
5λ2 + 7λ− 3). Allora λ1 = 0 è radice di molteplicità 2 e si trova anche la radice λ2 = 1.
Dividendo per λ − 1 si ricava p(λ) = λ2(λ − 1)(λ2 − 4λ + 3). Si determinano cos̀ı altre
due radici che sono λ3 = 3 ed ancora λ2 = 1 per cui quest’ultima ha molteplicità 2.
Le soluzioni dell’equazione differenziale omogenea (2) sono dunque

y(x) = c1 + c2x+ c3e
x + c4x e

x + c5e
3x , ci ∈ R, 1 ≤ i ≤ 5 .

�

Esercizio 10.4. Risolvere le seguenti equazioni differenziali omogenee di ordine superiore
al primo

(1) y(6) + 3y(4) + 3y′′ + y = 0 , (2) y′′′ − 8y′′ + 25y′ − 26y = 0 .

� Soluzione di (1). Il polinomio caratteristico è p(λ) = λ6 + 3λ4 + 3λ2 + 1 ovvero
p(λ) = (λ2 +1)3, quindi ha due radici complesse coniugate λ1 = i, λ2 = λ1 = −i, ciascuna
di molteplicità m = 3. Pertanto la generica soluzione dell’equazione differenziale (1) è

y(x) = c1 cosx+c2 sinx+c3x cosx+c4x sinx+c5x
2 cosx+c6x

2 sinx , cj ∈ R, 1 ≤ j ≤ 6 .

Soluzione di (2). Il polinomio caratteristico è p(λ) = λ3 − 8λ2 + 25λ − 26 e p(2) = 0
perciò si ha la radice reale λ1 = 2. Per le altre radici operiamo la divisione tra p(λ) e il
monomio λ− 2 ottenendo λ3− 8λ2 + 25λ− 26 = (λ− 2)(λ2− 6λ+ 13), dove il trinomio di

II grado ha
∆

4
= −4, per cui il polinomio caratteristico ha anche le due radici complesse

e coniugate λ2 = 2i, λ3 = −2i. La generica soluzione dell’equazione differenziale (2) è
dunque

y(x) = c1 e
2x + c2 cos 2x+ c3 sin 2x , c1, c2, c3 ∈ R .

�

Esercizio 10.5. Risolvere le seguenti equazioni differenziali omogenee:

(1) y(4) − 4y′′′ − 2y′′ + 12y′ + 9y = 0 , (2) y(4) − 4y′′′ + 8y′′ − 8y′ + 4y = 0 .
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� Soluzione di (1). Il polinomio caratteristico è p(λ) = λ4 − 4λ3 − 2λ2 + 12λ + 9. Si
osserva che λ1 = −1 è una radice, per cui dividendo per λ+ 1 si ottiene

p(λ) = (λ+ 1)(λ3 − 5λ2 + 3λ+ 9)

dove λ3 − 5λ2 + 3λ+ 9 è ancora divisibile per λ+ 1 per cui

p(λ) = (λ+ 1)2(λ2 − 6λ+ 9) = (λ+ 1)2(λ− 3)2 .

Le radici, dunque, sono λ1 = −1 e λ2 = 3 ciascuna con molteplicità m = 2. Pertanto le
soluzioni dell’equazione differenziale (1) sono

y(x) = c1e
−x + c2e

3x + c3xe
−x + c4xe

3x , cj ∈ R, 1 ≤ j ≤ 4 .

Soluzione di (2). Il polinomio caratteristico è p(λ) = λ4 − 4λ3 + 8λ2 − 8λ+ 4.
Si osservi che

(λ− 1)4 =
4∑

k=0

(
4

k

)
λk(−1)4−k = 1− 4λ+ 6λ2 − 4λ3 + λ4

quindi

p(λ) = (λ− 1)4 + 2λ2− 4λ+ 3 = (λ− 1)4 + 2(λ2− 2λ+ 1) + 1 = (λ− 1)4 + 2(λ− 1)2 + 1 =

=
[
(λ− 1)2 + 1

]2
.

Le radici di p(λ) sono le soluzioni (ciascuna con molteplicità 2) di (λ− 1)2 + 1 = 0 ovvero
λ − 1 = ±i che dà λ1 = 1 + i, λ2 = 1 − i = λ1. Pertanto le soluzioni dell’equazione
differenziale proposta sono

y(x) = c1e
x cosx+ c2e

x sinx+ c3xe
x cosx+ c4xe

x sinx , ci ∈ R, 1 ≤ i ≤ 4 .

�

Esercizio 10.6. Risolvere le seguenti equazioni differenziali a coefficienti costanti

(1) y(3) − 3y′ − 2y = ex cosx , (2) y(4) − 2y(2) + y = 5ex sinx+ x2 + 1 .

� Soluzione di (1). Il polinomio caratteristico è p(λ) = λ3 − 3λ − 2 e λ1 = −1 ne è
una radice per cui, dividendo per λ + 1, si ottiene p(λ) = (λ + 1)(λ2 − λ − 2). Le radici
del trinomio risultano essere −1 e λ2 = 2. Quindi il polinomio caratteristico ha la radice
doppia λ1 = −1 e la radice (semplice) λ2 = 2. Le soluzioni dell’equazione differenziale
omogenea associata all’equazione differenziale (1) sono

u(x) = c1e
2x + e−x(c2 + c3x) , c1, c2, c3 ∈ R .

Poiché il dato è del tipo prodotto di un’esponenziale e di una combinazione lineare di
cosx e sin x, la soluzione particolare la ricerchiamo del tipo

y0(x) = ex(a cosx+ b sinx) , a, b ∈ R .

Calcolando la derivate fino al III ordine si ottiene

(10.2)

y′0(x) = ex[(a+ b) cosx+ (b− a) sinx]

y′′0(x) = ex(2b cosx− 2a sinx)

y′′′0 (x) = ex[2(b− a) cosx− 2(a+ b) sinx)] .
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Sostituendo nell’equazione differenziale e semplificando per ex 6= 0, si ha la relazione

−(b+ 7a) cosx+ (a− 7b) sinx = cosx .

Siccome le funzioni cosx e sin x sono linearmente indipendenti, si ottiene il sistema lineare
in a, b {

b+ 7a = −1

a− 7b = 0

da cui a = − 7

50
, b = − 1

50
. Pertanto

y0(x) = − 1

50
ex(7 cosx+ sinx) .

In conclusione le soluzioni dell’equazione differenziale (1) sono le funzioni y(x) = y0(x) +
u(x) ovvero

y(x) = − 1

50
ex(7 cosx+ sinx) + c1e

2x + e−x(c2 + c3x) , c1, c2, c3 ∈ R .

Soluzione di (2). Il polinomio caratteristico è p(λ) = λ4−2λ2 +1 = (λ2−1)2. Le radici
sono λ1 = 1, λ2 = −1 entrambe con molteplicità 2. Pertanto le soluzioni dell’equazione
differenziale omogenea associata sono le funzioni

u(x) = c1e
x + c2e

−x + c3xe
x + c4xe

−x , cj ∈ R, 1 ≤ j ≤ 4 .

Osservando il dato dell’equazione differenziale, la soluzione particolare è del tipo

y0(x) = y1(x) + y2(x)

per y1, y2 rispettivamente soluzioni particolari delle equazioni differenziali

y(4) − 2y(2) + y = 5ex sinx , y(4) − 2y(2) + y = x2 + 1 .

Perciò esse saranno del tipo

y1(x) = ex(a cosx+ b sinx) , y2(x) = a0 + a1x+ a2x
2 .

Derivando

y′1(x) = ex[(a+ b) cosx+ (b− a) sinx] , y′2(x) = a1 + 2a2x

y′′1(x) = ex(2b cosx− 2a sinx) , y′′1(x) = 2a2

y′′′1 (x) = ex[2(b− a) cosx− 2(a+ b) sinx)] , y′′′1 (x) = y
(4)
1 (x) = 0

y
(4)
1 (x) = ex(−4a cosx− 4b sinx) .

Sostituendo nelle equazioni differenziali si ottengono le relazioni

−(3a+ 4b) cosx+ (4a− 3b) sinx = 5 sin x , a2x
2 + a1x+ a0 − 4a2 = x2 + 1

da cui i sistemi lineari {
3a+ 4b = 0

4a− 3b = 5
,


a2 = 1

a1 = 0

a0 − 4a2 = 1
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le cui soluzioni sono a =
4

5
, b = −3

5
, a0 = 5, a1 = 0, a2 = 1. La soluzione particolare

risulta dunque

y0(x) =
1

5
ex(4 cosx− 3 sinx) + x2 + 5 .

Pertanto le soluzioni dell’equazione differenziale (2) sono

y(x) =
1

5
ex(4 cosx−3 sinx+c1)+c2e

−x+c3xe
x+c4xe

−x+x2 +5 , cj ∈ R, 1 ≤ j ≤ 4 .

�

Esercizio 10.7. Risolvere le seguenti equazioni differenziali

(1) y(5) − 2y(4) + 2y′′′ − 4y′′ + y′ − 2y = ex cos(x+ 2) , (2) 2y′′ + y′ − y = 2ex .

� Soluzione di (1). Il polinomio caratteristico è p(λ) = λ5 − 2λ4 + 2λ3 − 4λ2 + λ − 2.
Osserviamo che tale polinomio non può avere radici negative. Una rapida verifica prova
che λ1 = 2 è radice del polinomio Con la divisione per λ−2 si ottiene p(λ) = (λ−2)(λ4 +
2λ2 + 1) = (λ − 2)(λ2 + 1)2 cos̀ı si hanno anche le radici complesse coniugate λ2 = i e
λ2 = −i, con molt(λ2) = molt(λ2) = 2. Le soluzioni dell’equazione differenziale omogenea
sono le funzioni u ∈ C∞(R)

u(x) = c1e
2x + c2 cosx+ c3 sinx+ c4x cosx+ c5x sinx ,

cj ∈ R, 1 ≤ j ≤ 5. Il dato b(x) = ex cos(x + 2) = ex(cos 2 cosx − sin 2 sinx) è del tipo
b(x) = eαx(A cos βx + B sin βx) con α = β = 1, A = cos 2, B = − sin 2. Determiniamo
una soluzione particolare dello stesso tipo, cioè

y0(x) = ex(a cosx+ b sinx)

Derivando si ha
y′0(x) = ex[(a+ b) cosx+ (b− a) sinx]

y′′0(x) = 2ex(b cosx− a sinx)

y′′′0 (x) = 2ex[(b− a) cosx− (a+ b) sinx]

y
(4)
0 (x) = −4ex(a cosx+ b sinx)

y
(5)
0 (x) = −4ex[(a+ b) cosx+ (b− a) sinx] .

Sostituendo nell’equazione differenziale si ottiene la relazione

−(a+ 7b) cosx+ (7a− b) sinx = cos 2 cosx− sin 2 sinx

da cui il sistema {
−a− 7b = cos 2

7a− b = − sin 2

con soluzioni

a = − 1

50
(cos 2 + 7 sin 2) , b =

1

50
(sin 2− 7 cos 2)

Ne segue che

y0(x) =
1

50
ex [−(cos 2 + 7 sin 2) cosx+ (sin 2− 7 cos 2) sinx] .
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Infine le soluzioni dell’equazione differenziale sono le funzioni C∞(R)

y(x) =
1

50
ex [−(cos 2 + 7 sin 2) cosx+ (sin 2− 7 cos 2) sinx] +

+c1e
2x + c2 cosx+ c3 sinx+ c4x cosx+ c5x sinx

per cj ∈ R, 1 ≤ j ≤ 5.

Soluzione di (2). Il polinomio caratteristico è p(λ) = 2λ2 + λ− 1 le cui radici risultano

essere λ1 = −1, λ2 =
1

2
. Ne segue che le soluzioni dell’equazione omogenea associata sono

u(x) = c1e
−x + c2e

x/2 , c1, c2 ∈ R .

La soluzione particolare è del tipo y0(x) = cex per cui y′(x) = y′′(x) = cex. Sos-
tituendo nell’equazione differenziale si determina c = 1. Dunque y0(x) = ex. Le soluzioni
dell’equazione differenziale (2) sono

y(x) = ex + c1e
−x + c2e

x/2 , c1, c2 ∈ R .

�

Esercizio 10.8. Risolvere le equazioni differenziali

(1) 2y′′ + y′ − y = 2ex cosx , (2) y′′ + 3y′ + 2y = xe−x .

� Soluzione di (1). L’equazione differenziale omogenea associata è la stessa di quella
dell’equazione differenziale (2) dell’Esercizio 10.7 per cui le sue soluzioni sono

u(x) = c1e
−x + c2e

x/2 , c1, c2 ∈ R .

La soluzione particolare è del tipo

y0(x) = ex(a cosx+ b sinx)

come quella di (1) dell’Esercizio 10.7. Pertanto, con le stesse espressioni di y′0, y
′′
0 trovate

in tale esercizio, sostituendo nella (1), si ottiene la relazione

5b cosx− 5a sinx = 2 cos x

da cui a = 0, b =
2

5
. In definitiva le soluzioni dell’equazione differenziale (1) sono

y(x) =
2

5
ex sinx+ c1e

−x + c2e
x/2 , c1, c2 ∈ R .

Soluzione di (2). Il polinomio caratteristico è p(λ) = λ2 +3λ+2 per cui le radici (reali,
semplici e distinte) sono λ1 = −2, λ2 = −1, quindi le soluzioni dell’equazione differenziale
omogenea associata sono le funzioni

u(x) = c1e
−2x + c2e

−x , c1, c2 ∈ R

Per determinare una soluzione particolare, il dato b(x) = xe−x è del tipo b(x) = (b0 +
b1x)eαx con α = −1 che è radice del polinomio caratteristico. Cercheremo allora una
soluzione particolare del tipo

y0(x) = x(a1x+ a0)e
−x ovvero y0(x) = e−x(a1x

2 + a0x) .
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Si ha
y′0(x) = e−x(−a1x2 − a0x+ 2a1x+ a0) =

= e−x[−a1x2 + (2a1 − a0)x+ a0]

y′′0(x) = e−x(a1x
2 − (2a1 − a0)x− a0 − 2a1x+ 2a1 − a0) =

= e−x[a1x
2 + (−4a1 + a0)x+ 2(a1 − a0)]

Sostituendo nell’equazione differenziale, si ottiene il sistema lineare{
2a1 = 1

2a1 + a0 = 0
=⇒ a0 = −1, a1 =

1

2

quindi

y0(x) = e−x
(

1

2
x2 − x

)
.

Infine la generica soluzione dell’equazione differenziale data è

y(x) = e−x
(

1

2
x2 − x+ c1

)
+ c2e

−2x , c1, c2 ∈ R .

�

Esercizio 10.9. Risolvere le equazioni differenziali

(1) y′′ + y′ = sinx− cosx , (2) y′′ − y = ex sinx .

� Soluzione di (1). Il polinomio caratteristico è p(λ) = λ2 + λ = λ(λ + 1) le cui radici
(semplici) sono λ1 = 0, λ2 = −1 per cui le soluzioni dell’equazione differenziale omogenea
associata sono le funzioni u ∈ C∞(R),

u(x) = c1 + c2 e
−x , c1, c2 ∈ R .

Il dato è del tipo b(x) è una combinazione lineare di cosαx e sinαx con α = 1 e dunque
iα = i non è soluzione del polinomio caratteristico. In questo caso una soluzione partico-
lare la ricerchiamo dello stesso tipo del dato, cioè

y0(x) = a cosx+ b sinx .

Si ha
y′0(x) = −a sinx+ b cosx

y′′0(x) = −a cosx− b sinx .

La sostituzione nell’equazione differenziale dà la relazione

(b− a) cosx− (a+ b) sinx = sinx− cosx

quindi si ha il sistema lineare{
b− a = −1

a+ b = 1
=⇒ a = 0, b = −1 .

Pertanto y0(x) = − sinx. Infine le soluzioni dell’equazione differenziale data sono le
funzioni y ∈ C∞(R),

y(x) = c1 + c2 e
−x − sinx , c1, c2 ∈ R .
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Soluzione di (2). Il polinomio caratteristico è p(λ) = λ2 − 1 con radici 1 e −1 per cui
le soluzioni dell’equazione differenziale omogenea associata sono le funzioni

u(x) = c1e
x + c2e

−x , c1, c2 ∈ R .

La soluzione particolare è del tipo

y0(x) = ex(a cosx+ b sinx) .

Derivando (cfr. (10.2)) e sostituendo nell’equazione differenziale si perviene alla relazione

(2b− a) cosx− (2a+ b) sinx = sinx

che dà il sistema {
2b− a = 0

−2a− b = 1
=⇒ a =

2

5
, b = −1

5
.

Quindi

y0(x) =
1

5
ex(2 cosx− sinx)

avendo cos̀ı le soluzioni dell’equazione differenziale

y(x) =
1

5
ex(2 cosx− sinx+ c1) + c2e

−x , c1, c2 ∈ R .

�

Esercizio 10.10. Risolvere le equazioni differenziali

(1) y′′ − y = ex + sinx , (2) y(2) − 3y′ + 2y = (2x− 1)e−x .

� Soluzione di (1). Il polinomio caratteristico è p(λ) = λ2 − 1 le cui radici (semplici)
sono λ1 = −1, λ2 = 1. Quindi le soluzioni dell’equazione differenziale omogenea associata
sono

u(x) = c1e
−x + c2e

x , c1, c2 ∈ R .

Cerchiamo una soluzione particolare del tipo

y0(x) = a1xe
x + a2 sinx+ a3 cosx

somma delle soluzioni particolari dell’equazioni differenziali

y′′ − y = ex , y′′ − y = sinx .

Derivando si ottiene:

y′0 = a1e
x + a1xe

x + a2 cosx− a3 sinx

y′′0 = 2a1e
x + a1xe

x − a2 sinx− a3 cosx

che sostituite nell’equazione differenziale y′′ − y = ex + sinx danno il sistema lineare
2a1 = 1

−2a2 = 1

−2a3 = 0
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la cui soluzione è a1 =
1

2
, a2 = −1

2
, a3 = 0. Pertanto una soluzione particolare è

y0(x) =
1

2
xex − 1

2
sinx e le soluzioni dell’equazione differenziale data sono

y(x) =
1

2
xex − 1

2
sinx+ c1e

−x + c2e
x , c1, c2 ∈ R .

Soluzione di (2). Il polinomio caratteristico è p(λ) = λ2 − 3λ + 2 le cui radici sono
λ1 = 1, λ2 = 2. Le soluzioni dell’equazione differenziale omogenea associata sono

u(x) = c1 e
x + c2 e

2x , c1, c2 ∈ R .

Una soluzione particolare la cerchiamo del tipo

y0(x) = (C1x+ C0)e
−x .

Derivando
y′0(x) = e−x(−C1x− C0 + C1)

y′′0(x) = e−x(C1x+ C0 − 2C1) .

Sostituendo nell’equazione differenziale si ottiene

6C1x+ 6C0 − 5C1 = 2x− 1

da cui il sistema lineare{
6C1 = 2

6C0 − 5C1 = −1
=⇒ C0 =

1

9
, C1 =

1

3
.

Perciò

y0(x) =

(
1

3
x+

1

9

)
e−x

e le soluzioni dell’equazione differenziali sono le funzioni

y(x) =

(
1

3
x+

1

9

)
e−x + c1 e

x + c2 e
2x , c1, c2 ∈ R .

�

Esercizio 10.11. Risolvere le equazioni differenziali

(1) y′′ − 2y′ + y = ex − x+ sinx , (2) y′′′ + y′′ − y′ − y = (x+ 1)e−x .

� Soluzione di (1). Il polinimio caratteristico è p(λ) = λ2 − 2λ + 1 = (λ − 1)2 che ha
λ = 1 come radice doppia. Le soluzioni dell’equazione differenziale omogenea associata
sono

u(x) = c1e
x + c2xe

x , c1, c2 ∈ R .

Ricerchiamo una soluzione particolare del tipo

y0(x) = a0 + a1x+ a2x
2ex + a3 sinx+ a4 cosx

somma delle soluzioni particolari delle equazioni differenziali

y′′ − 2y′ + y = −x , y′′ − 2y′ + y = ex , y′′ − 2y′ + y = sinx .
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Si ha
y′0 = a1 + a2xe

x(2 + x) + a3 cosx− a4 sinx ,

y′′0 = a2e
x(2 + 4x+ x2)− a3 sinx− a4 cosx .

Sostituendo nell’equazione differenziale si ottiene il sistema lineare

2a2 = 1

a1 = −1

2a4 = 1

−2a3 = 0

a0 − 2a1 = 0

che ha la soluzione a0 = −2, a1 = −1, a2 =
1

2
, a3 = 0, a4 =

1

2
. Pertanto una soluzione

particolare è

y0 = −2− x+
1

2
x2ex +

1

2
cosx

e le soluzioni dell’equazione differenziale data sono

y(x) = −2− x+
1

2
x2ex +

1

2
cosx+ c1e

x + c2xe
x , c1, c2 ∈ R .

Soluzione di (2). Il polinomio caratteristico è p(λ) = λ3 + λ2− λ− 1 che si decompone
in p(λ) = (λ+ 1)2(λ− 1): ha quindi la radice semplice λ1 = 1 e la radice doppia λ2 = −1.
Le soluzioni dell’equazione omogenea associata sono dunque

u(x) = c1e
x + c2e

−x + c3xe
−x .

Siccome il dato è b(x) = (x + 1)e−x (cioè prodotto di un polinomio per un’esponenziale
ekx con k = −1 che è radice doppia del polinomio caretteristico) cerchiamo una soluzione
particolare del tipo

y0(x) = x2(a0 + a1x)e−x .

Derivando successivamente si ha

y′0 =
(
−a1x3 + (3a1 − a0)x2 + 2a0x

)
e−x ,

y′′0 =
(
a1x

3 − (6a1 − a0)x2 + 2(3a1 − 2a0)x+ 2a0
)
e−x ,

y′′′0 =
(
−a1x3 + (9a1 − a0)x2 − 2(9a1 − 3a0)x+ 6a1 − 6a0

)
e−x .

Sostituite nell’equazione differenziale y′′′+y′′−y′−y = (x+1)e−x danno il sistema lineare{
−12a1 = 1

6a1 − 4a0 = 1

la cui soluzione è a0 = −3

8
, a1 = − 1

12
ovvero y0(x) = −x2

(
1

12
x+

3

8

)
e−x. Le soluzioni

dell’equazione differenziale proposta sono pertanto

y(x) = −x2
(

1

12
x+

3

8

)
e−x + c1e

x + c2e
−x + c3xe

−x , c1, c2, c3 ∈ R .

�
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Esercizio 10.12. Trovare le soluzioni delle seguenti equazioni differenziali di ordine su-
periore al primo a coefficienti costanti:

(1) y(3) + y(2) = x2 + 2x+ ex , (2) y′′ − 2y′ + y = cosx ,

(3) y′′ + y = sinx .

� Soluzione di (1). L’equazione differenziale omogenea associata è y(3) + y(2) = 0 il
cui polinomio caratteristico è p(λ) = λ3 + λ2 = λ2(λ + 1). Le sue radici sono λ1 =
0 (doppia) e λ2 = −1 (semplice). Le soluzioni dell’equazione differenziale omogenea
associata all’equazione differenziale data sono

u(x) = c1 + c2x+ c3e
−x .

Poiché il dato b(x) = x2+2x+ex è somma di un polinomio di II grado e di un’esponenziale
e la prima derivata non nulla nell’equazione differenziale è la seconda, cerchiamo una
soluzione particolare del tipo

y0(x) = x2(a2x
2 + a1x+ a0) + a3e

x

che è la somma delle due soluzioni particolari dell’equazioni differenziali

y(3) + y(2) = x2 + 2x , y(3) + y(2) = ex .

Derivando successivamente si ha

y′0 = 4a2x
3 + 3a1x

2 + 2a0x+ a3e
x ,

y′′0 = 12a2x
2 + 6a1x+ 2a0 + a3e

x ,

y′′′0 = 24a2x+ 6a1 + a3e
x .

Quindi sostituendo nell’equazione differenziale si ottiene il sistema lineare
12a2 = 1

12a2 + 3a1 = 1

3a1 + a0 = 0

2a3 = 1

che ha le soluzioni a0 = a1 = 0, a2 =
1

12
, a3 =

1

2
. La soluzione particolare è

y0(x) =
1

12
x4 +

1

2
ex

e quindi le soluzioni dell’equazione differenziale data sono

y(x) =
1

12
x4 +

1

2
ex + c1 + c2x+ c3e

−x , c1, c2, c3 ∈ R .

Soluzione di (2). Il polinomio caratteristico è p(λ) = λ2 − 2λ + 1 = (λ − 1)2 che ha
λ = 1 come radice doppia. Le soluzioni dell’equazione differenziale omogenea associata
sono allora

u(x) = c1e
x + c2xe

x , c1, c2 ∈ R .

Cerchiamo una soluzione particolare del tipo

y0(x) = a1 cosx+ a2 sinx , a1, a2 ∈ R .



Esercizi sulle equazioni differenziali 139

Derivando si ha
y′0 = −a1 sinx+ a2 cosx

y′′0 = −a1 cosx− a2 sinx

che sostituite nell’equazione differenziale y′′ − 2y′ + y = cosx dà

2a1 sinx− 2a2 cosx = cosx

per cui è a1 = 0, a2 = −1

2
e la soluzione particolare cercata risulta essere y0(x) = −1

2
sinx.

Ne segue che le soluzioni dell’equazione differenziale data sono

y(x) = −1

2
sinx+ c1e

x + c2xe
x , c1, c2 ∈ R .

Soluzione di (3). Il polinomio caratteristico è p(λ) = λ2 + 1 che ha le radici (semplici)
complesse e coniugate λ1 = i, λ2 = −i. Le soluzioni dell’equazione differenziale omogenea
associata sono

u(x) = c1 cosx+ c2 sinx , c1, c2 ∈ R .

In questo caso per determinare una soluzione particolare useremo il metodo della varia-
zione delle costanti. Sia dunque

y0(x) = c1(x) cosx+ c2(x) sinx .

Derivando

y′0 = c′1 cosx+ c′2 sinx− c1 sinx+ c2 cosx con c′1 cosx+ c′2 sinx = 0

y′′0 = −c′1 sinx+ c′2 cosx− c1 cosx− c2 sinx

da cui, sostituendo nell’equazione differenziale y′′ + y = sin x e tenendo conto della con-
dizione imposta a c′1 cosx + c′2 sinx si ottiene il sistema di equazioni differenziali del I
ordine {

c′1 cosx+ c′2 sinx = 0

−c′1 sinx+ c′2 cosx = sinx .

Risolvendo si ha {
c′1 = − sin2 x

c′2 = sinx cosx

che integrate danno c1(x) = −1

2
x+

1

2
sinx cosx, c2 =

1

2
sin2 x.

La soluzione particolare risulta allora essere y0(x) = −1

2
x cosx+

1

2
sinx e di conseguenza

le soluzioni dell’equazione differenziale data sono

y(x) = −1

2
x cosx+ c1 cosx+ c2 sinx , c1, c2 ∈ R

(essendo
1

2
sinx già compresa in c2 sinx).

�
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Esercizio 10.13. Usando il metodo della variazione delle costanti, determinare le solu-
zioni delle equazioni differenziali

(1) y′′ + 2y′ + 5y = 2xe−x cos 2x , (2) y′′ − y = ex sinx ,

(3) y′′ − 2y′ + y = (x− 1)4 cosx .

� Soluzione di (1). Il polinomio caratteristico è p(λ) = λ2+2λ+5 le cui radici (complesse
e semplici) sono λ1 = −1 + 2i, λ2 = λ1 = −1 − 2i. Allora le soluzione dell’equazione
differenziale omogenea associata sono

u(x) = c1e
−x cos 2x+ c2e

−x sin 2x , c1, c2 ∈ R .

Cerchiamo dunque una soluzione particolare del tipo

y0(x) = e−x (c1(x) cos 2x+ c2(x) sin 2x) .

Usando il metodo della variazione delle costanti si ha

y′0(x) = e−x [sin 2x(−2c1(x)− c2(x)) + cos 2x(−c1(x) + 2c2(x))]

con e−x [c′1(x) cos 2x+ c′2(x) sin 2x] = 0,

y′′0(x) = e−x [sin 2x (−2c′1(x)− c′2(x) + 4c1(x)− 3c2(x)) +

+ cos 2x (2c′2(x)− c′1(x)− 3c1(x)− 4c2(x))] ;

sostituendo nell’equazione differenziale si ottiene

e−x [c′1(x)(−2 sin 2x− cos 2x) + c′2(x)(2 cos 2x− sin 2x)] = 2xe−x cos 2x .

Dobbiamo dunque risolvere il sistema{
c′1(x) cos 2x+ c′2(x) sin 2x = 0

−c′1(x)(2 sin 2x+ cos 2x) + c′2(x)(2 cos 2x− sin 2x) = 2x cos 2x

ovvero, per cos 2x 6= 0,{
c′1(x) = −(tan 2x)c′2(x)

c′2(x)[(2 sin 2x+ cos 2x) tan 2x+ (2 cos 2x− sin 2x)] = 2x cos 2x .

La seconda equazione differenziale del sistema si riscrive

c′2(x)(2 sin2 2x+ sin 2x cos 2x+ 2 cos2 2x− sin 2x cos 2x) = 2x cos2 2x

che dà
c′2(x) = x cos2 2x .

Quindi si ha il sistema{
c′1(x) = −x sin 2x cos 2x

c′2(x) = x cos2 2x
⇐⇒

{
c′1(x) = −1

2
x sin 4x

c′2(x) = x cos2 2x .

Poiché

−1

2

∫
x sin 4x dx =

1

2

(
1

4
x cos 4x− 1

4

∫
cos 4x dx

)
=

=
1

8

(
x cos 4x−

∫
cos 4x dx

)
=

1

8

(
x cos 4x− 1

4
sin 4x

)
+ c
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allora

c1(x) =
1

32
(4x cos 4x− sin 4x) .

Poiché∫
cos2 2x dx =

t=2x

1

2

∫
cos2 t dt =

1

4
(t+ sin t cos t) + c =

1

4
(2x+ sin 2x cos 2x) + c =

=
1

8
(4x+ sin 4x) + c

allora ∫
x cos2 2x dx =

1

8

[
x(4x+ sin 4x)−

∫
(4x+ sin 4x) dx

]
=

=
1

8

[
4x2 + x sin 4x− 2x2 +

1

4
cos 4x

]
+ c =

1

32
(8x2 + 4x sin 4x+ cos 4x) + c

per cui

c2(x) =
1

32
(8x2 + 4x sin 4x+ cos 4x) .

Pertanto

y0(x) =
1

32
e−x[(4x cos 4x− sin 4x) cos 2x+ (8x2 + 4x sin 4x+ cos 4x) sin 2x] .

Le soluzioni dell’equazione differenziale data sono

y(x) =
1

32
e−x[(4x cos 4x− sin 4x+ c1) cos 2x+ (8x2 + 4x sin 4x+ cos 4x+ c2) sin 2x] ,

per c1, c2 ∈ R.

Soluzione di (2). Il polinomio caratteristico è p(λ) = λ2 − 1 le cui radici sono λ1 =
1, λ2 = −1 per cui le soluzioni dell’equazione differenziale omogenea associata sono le
funzioni

u(x) = c1e
x + c2e

−x , c1, c2 ∈ R .

Sia allora

y0(x) = c1(x)ex + c2(x)e−x

una soluzione particolare dell’equazione differenziale data. Allora

y′0 = c′1e
x + c′2e

−x + c1e
x − c2e−x con c′1e

x + c′2e
−x = 0

y′′0 = c′1e
x − c′2e−x + c1e

x + c2e
−x

e sostituendo nell’equazione differenziale si ottiene il sistema di equazioni differenziali del
I ordine {

c′1e
x + c′2e

−x = 0

c′1e
x − c′2e−x = ex sinx .

Sommando membro a membro si ricava 2c′1 = sinx che sostituito nella I equazione del
sistema dà 2c′2 = −e2x sinx, quindi

c′1 =
1

2
sinx

c′2 = −1

2
e2x sinx .
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Abbiamo ∫
1

2
sinx dx = −1

2
cosx+ C

mentre integrando per parti∫
−1

2
e2x sinx dx =

1

10
e2x(cosx− 2 sinx) + C .

Prendiamo allora

c1(x) = −1

2
cosx , c2(x) =

1

10
e2x(cosx− 2 sinx)

per cui

y0(x) = −1

2
ex cosx+

1

10
ex(cosx− 2 sinx) =

1

10
ex(−5 cosx+ cosx− 2 sinx)

ovvero

y0(x) = −1

5
ex(2 cosx+ sinx)

Infine le soluzioni dell’equazione differenziale data sono le funzioni

y(x) = −1

5
ex(2 cosx+ sinx+ c1) + c2e

−x , c1, c2 ∈ R .

Soluzione di (3). Il polinomio caratteristico è p(λ) = λ2 − 2λ + 1 = (λ − 1)2 che ha
λ = 1 come radice doppia. Le soluzioni dell’equazione differenziale omogenea sono

u(x) = c1xe
x + c2e

x , c1, c2 ∈ R .

Sia
y0(x) = c1(x)xex + c2(x)ex = [x c1(x) + c2(x)]ex

abbiamo allora

y′0 = [x c′1 + c′2 + c1 + x c1 + c2]e
x = [x c′1 + c′2 + (x+ 1)c1 + c2]e

x

con x c′1 + c′2 = 0,
y′′0 = [(x+ 1)c′1 + c′2 + c1 + (x+ 1)c1 + c2]e

x

che sostituite nell’equazione differenziale assieme alla condizione imposta xc′1 + c′2 = 0 dà
il sistema di equazioni differenziali del I ordine{

xc′1 + c′2 = 0

[(x+ 1)c′1 + c′2]e
x = (x− 1)4 cosx

⇐⇒

{
c′1 = (x− 1)4e−x cosx

c′2 = −x(x− 1)4e−x cosx .

Per n ∈ N siano

In =

∫
(x− 1)ne−x cosx dx = Fn(x) + C ,

Jn =

∫
(x− 1)ne−x sinx dx

in modo che ∫
(x− 1)4e−x cosx dx = I4 = F4(x) + C

mentre notiamo che∫
−x(x− 1)4e−x cosx dx = −xF4(x) +

∫
F4(x) dx = −xF4(x) + F (x) + C .
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Prendiamo allora

c1(x) = F4(x) , c2(x) = −xF4(x) + F (x)

cosicché

xc1(x) + c2(x) = xF4(x)− xF4(x) + F (x) = F (x) ,

dunque

y0(x) = exF (x)

e le soluzioni dell’equazione differenziale sono le funzioni

y(x) = ex[F (x) + c1x+ c2]

Dobbiamo ora determinare F (x). È facile verificare che, per n ≥ 1,

In =
1

2
(x− 1)ne−x(sinx− cosx) +

n

2
In−1 −

n

2
Jn−1 ,

Jn = −1

2
(x− 1)ne−x(sin x+ cosx) +

n

2
In−1 +

n

2
Jn−1 ,

da cui si ricavano

In + Jn = −(x− 1)ne−x cosx+ nIn−1 , In − Jn = (x− 1)ne−x sinx− nJn−1 .

Inoltre

I0 =

∫
e−x cosx dx =

1

2
e−x(sinx− cosx) + C ,

J0 =

∫
e−x sinx dx = −1

2
e−x(sinx+ cosx) + C .

Le relazioni sopra scritte permettono di calcolare

F4(x) = e−x sinx

[
1

2
(x− 1)4 + 2(x− 1)3 + 3(x− 1)2 − 3

]
+

+e−x cosx

[
−1

2
(x− 1)4 + 3(x− 1)2 + 6(x− 1) + 3

]
e infine

F (x) + C =

∫
F4(x) dx = e−x sinx

[
−1

2
(x− 1)4 − 2(x− 1)3 + 12(x− 1) + 15

]
−

−(x− 1)e−x cosx
[
2(x− 1)2 + 9(x− 1) + 12

]
+ C .

�

Esercizio 10.14. Risolvere le seguenti equazioni differenziali

(1∗) 2yy′′ − 4y′
2 − y′ = 0 , (2) y′′ − sin y′′ = 0 ,

(3∗) 27y′y′′ − (1 + 9y′
2
)
y′′′

y′′
= 0 , y′′ 6= 0 .
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� Soluzione di (1∗). Posto t(y) = y′ si ha t
(
y(x)

)
= y′(x) da cui

y′′(x) =
d

dx
y′(x) =

d

dx
t
(
y(x)

)
=
dt

dy

(
y(x)

) dy
dx

(x) = t′
(
y(x)

)
y′(x) = t′

(
y(x)

)
t
(
y(x)

)
.

Dunque y′′ = t′(y)t(y), cosicché l’equazione differenziale si riscrive come l’equazione dif-
ferenziale nella variabile y

2ytt′ − 4t2 − t = 0 ⇐⇒ t(2yt′ − 4t− 1) = 0 .

A t = 0 corrispondono le funzioni costanti y = c, c ∈ R, soluzioni dunque dell’equazione
differenziale (1∗). Considerando l’equazione differenziale 2yt′ − 4t− 1 = 0 per y 6= 0, si è
ricondotti all’equazione differenziale del I ordine a variabili separabili

t′ =
1

2y
(4t+ 1) .

Se 4t+ 1 = 0 è y′ = −1

4
per cui le rette y = −1

4
x+ c sono soluzioni della (1∗).

Se 4t+ 1 6= 0 le soluzioni sono

log |4t+ 1| = 2 log |y|+ c ⇐⇒ |4t+ 1| = Cy2 , C > 0

da cui

4t+ 1 = ±Cy2 ⇐⇒ t =
1

4
(±Cy2 − 1) , C > 0 .

Abbiamo allora le equazioni differenziali (a variabili separabili) y′ =
1

4
(±Cy2 − 1).

Posto C = a2, a 6= 0, si hanno

y′ =
1

4
(a2y2 − 1) e y′ = −1

4
(a2y2 + 1) .

La prima equazione ha le soluzioni y = ±1

a
. Considerando a2y2 − 1 6= 0 nella prima,

risolviamo le equazioni differenziali

4

a2y2 − 1
y′ = 1 e

4

a2y2 + 1
y′ = −1 .

Integrando si ottengono le soluzioni

1

a
log

(
ay − 1

ay + 1

)2

= x+ b e
4

a
arctan ay = −x+ b , b ∈ R ,

da cui (
ay − 1

ay + 1

)2

= ea(x+b) e ay = tan
[a

4
(−x+ b)

]
.

La seconda dà le soluzioni

y =
1

a
tan
[a

4
(−x+ b)

]
, a, b ∈ R, a 6= 0 .

Per la prima si ha ∣∣∣∣ay − 1

ay + 1

∣∣∣∣ = ea(x+b)/2 ⇐⇒ ay − 1

ay + 1
= ±ea(x+b)/2
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Risolvendo rispetto a y si determinano le soluzioni

y =
1

a

1± ea(x+b)/2

1∓ ea(x+b)/2
⇐⇒ y =

1

a

(
1± ea(x+b)/2

)2
1− ea(x+b)

, a, b ∈ R, a 6= 0 .

Soluzione di (2). Derivando si ottiene

y′′′ − y′′′ cos y′′ = 0 ⇐⇒ y′′′(1− cos y′′) = 0 .

Se y′′′ = 0 allora y = ax2 + bx + c con a, b, c ∈ R; se cos y′′ = 1 allora y = aπx2 + bx + c
con a ∈ Z, b, c ∈ R.

Soluzione di (3∗). Sia t = y′, t = t(x), allora t′ = y′′, t′′ = y′′′. L’equazione differenziale
si riscrive

27tt′ = (1 + 9y′
2
)t′′ = 0 .

Sia z
(
t(x)

)
= t′(x) allora

t′′ = z′t′ = z′z

dove z′ =
dz

dt
, perciò l’equazione diventa

27tz − (1 + 9t2)z′ = 0 ⇐⇒ z′ =
27t

1 + 9t2
z

ottenendo cos̀ı un’equazione differenziale (in z) a variabili separabili. Integrando si ha

c1z = (1 + 9t2)3/2 , c1 ∈ R .

Tuttavia z = t′ per cui questa è l’equazione a variabili separabili (in t)

c1t
′ = (1 + 9t2)3/2

la cui soluzione è data da

c1

∫
(1 + 9t2)−3/2 dt = x+ c2 , c2 ∈ R .

Una soluzione dell’integrale (differenziale binomio13, cfr. (7.1)) è

t

(1 + 9t2)1/2

quindi si ha

c1
t

(1 + 9t2)1/2
= x+ c2 ⇐⇒ c21t

2 = (x+ c2)
2(1 + 9t2) ⇐⇒[

c21 − 9(x+ c2)
2
]
t2 = (x+ c2)

2

dalla quale si ricava

t = ± x+ c2[
c21 − 9(x+ c2)2

]1/2 .
Notiamo che, poichè t = y′, queste sono ancora equazioni differenziali a variabili separabili
(in y)

y′ = ± x+ c2[
c21 − 9(x+ c2)2

]1/2
13 m = 0, n = 2, p = −3

2
.
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con soluzioni

y(x) + c3 = ±
∫

x+ c2[
c21 − 9(x+ c2)2

]1/2 dx
i.e.

y(x) + c3 = ∓ 1

18

∫
−18(x+ c2)

[
c21 − 9(x+ c2)

2
]−1/2

dx

da cui, integrando,

y(x) + c3 = ∓1

9

[
c21 − 9(x+ c2)

2
]1/2 ⇐⇒ [

y(x) + c3
]2

=
1

81

[
c21 − 9(x+ c2)

2
]
,

c1, c2, c3 ∈ R. In conclusione le soluzioni y(x) dell’equazione differenziale (3) devono
soddisfare alla relazione

9
[
y(x) + a

]2
+ (x+ b)2 = c2 , a, b, c ∈ R .

�
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11. Appendice

Esercizio 11.1. Il limite
lim
n→∞

cosn

non esiste.

� Soluzione. Se fosse lim
n→∞

cosn = +∞ allora per ogni K ≥ 2 dovrebbe esistere nK ∈ N
tale che per ogni n > nK sia cosn > K ≥ 2 e questo è assurdo.
In modo analogo non può essere lim

n→∞
cosn = −∞. Supponiamo allora che sia lim

n→∞
cosn =

`. In particolare sarebbe lim
n→∞

cos 2n = ` ovvero lim
n→∞

(2 cos2 n − 1) = ` e questo equivar-

rebbe a 2 lim
n→∞

cos2 n = `+ 1. Per l’unicità del limite necessariamente

dovrebbe dunque essere 2`2 = `+ 1. Pertanto

(11.1) ` = 1 o ` = −1

2
.

D’altra parte sarebbe anche lim
n→∞

cos 3n = ` ovvero, poiché cos 3n = 4 cos3 n − 3 cosn,

dovrebbe essere (sempre per l’unicità del limite) 4`3 − 3` = `. Questo, tenuto conto della
(11.1), darebbe l’unica soluzione

(11.2) ` = 1 .

Ora sarebbe
lim
n→∞

sin2 n = lim
n→∞

(1− cos2 n) = 0

e quindi per ogni ε > 0 esisterebbe nε ∈ N, tale che per n > nε si avrebbe sin2 n < ε2

ovvero | sinn| < ε. Dunque sarebbe lim
n→∞

sinn = 0. Siccome per la (11.2) sarebbe anche

lim
n→∞

cos(n+ 1) = 1, si avrebbe l’assurdo

1 = lim
n→∞

(cos 1 cosn− sin 1 sinn) = cos 1 .

Ne segue allora che il limite lim
n→∞

cosn non esiste.

�

• L’esercizio sopra implica che anche il limite

lim
n→∞

sinn

non esiste.

Esercizio 11.2. Calcolare

lim
n→∞

log n!

n log n
.

� Soluzione. Poiché per n ≥ 2

log
n
√
n!

n
=

1

n
log n!− log n = log n

(
log n!

n log n
− 1

)
e

lim
n→∞

log
n
√
n!

n
= log

1

e
= −1
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allora per ogni ε > 0 esiste nε ∈ N, nε ≥ 2, tale che per ogni n ∈ N, n > nε si abbia∣∣∣∣log n

(
log n!

n log n
− 1

)
+ 1

∣∣∣∣ < ε

cioè

−ε− 1 < log n

(
log n!

n log n
− 1

)
< ε− 1

da cui

−ε+ 1

log n
<

log n!

n log n
− 1 <

ε− 1

log n
.

In particolare per ε = 2 esiste n2 ∈ N tale che per n > n2 sia

− 3

log n
<

log n!

n log n
− 1 <

1

log n
.

Applicando il teorema dei due carabinieri si ottiene

lim
n→∞

log n!

n log n
= 1 .

�

Esercizio 11.3. Dimostrare la seguente generalizzazione del Teorema di Rolle:

Teorema 11.1. Sia f : (−∞, a]→ R una funzione continua, derivabile in (−∞, a) e tale
che lim

x→−∞
f(x) = f(a). Allora esiste x0 ∈ (−∞, a) tale che f ′(x0) = 0.

In modo analogo, se f : [a,+∞)→ R è una funzione continua, derivabile in [a,+∞) e
tale che lim

x→+∞
f(x) = f(a), allora esiste x0 ∈ [a,+∞) tale che f ′(x0) = 0.

� Soluzione. (1) Supponiamo che esista x1 < a per cui f(x1) = f(a): dal teorema di
Rolle esisterebbe x0 ∈ (x1, a) per cuif ′(x0) = 0 e questo concluderebbe la dimostrazione.
(2) Se invece f(x1) 6= f(a) per ogni x1 < a, poiché la funzione f ha minimo e massimo sul
compatto [x1, a], si può supporre che essi cadano in x1 e a, per ogni x1 < a. Se ad esempio
a è il punto di minimo e x1 è il punto di massimo allora f(a) < f(x1). D’altra parte per
ogni x2 < x1 i punti di estremo di f su [x2, a] sono x2 e a. Se a fosse il punto di massimo
allora per ogni x ∈ [x2, a] sarebbe f(x) ≤ f(a): in particolare sarebbe f(x1) ≤ f(a)
(perché x1 ∈ [x2, a]) che sarebbe dunque un assurdo. Pertanto per ogni x2 < x1, a è il
punto di minimo e x2 è il punto di massimo di f su [x2, a]. Allora, poiché f(x2) 6= f(a),
è f(x2) > f(a) e per ogni x2 < x1, f(x1) ≤ f(x2), cioè f è decrescente su (−∞, x1] e di
conseguenza

f(a) = lim
x→−∞

f(x) = sup
x∈(−∞,x1]

f(x)

da cui l’assurdo f(x2) ≤ f(a). In modo analogo si procede se a è il punto di massimo. In
ogni caso dunque se per ogni x1 < a è f(x1) 6= f(a) allora esiste x′1 < a per cui almeno
uno dei punti di estremo di f su [x′1, a] sia in (x′1, a): se x0 è tale punto, si ha f ′(x0) = 0.

In modo analogo si procede se lim
x→+∞

f(x) = f(a).

�
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