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1. ESERCIZI SUL PRINCIPIO DI INDUZIONE MATEMATICA

Teorema 1.1 (Principio d’induzione matematica). Sia {P(n)},en una famiglia di
proposizioni enunciate ciascuna per il naturale n € N. Se

(i) P(0) e vera,

(ii) per n € N l'implicazione “P(n) = P(n+1)” é vera,

allora la proposizione P(n) é vera per ogni n € N.
Dal principio d’induzione matematica segue il seguente

Corollario 1.1. Sia {P(n)}neny una famiglia di proposizioni enunciate ciascuna per il
naturale n € N. Se

(i) P(ng) é vera per un certo ng € N,

(ii) limplicazione “P(n) = P(n+1)” é vera per n € N, n > ny,
allora la proposizione P(n) é vera per ogni n € N, n > ny.

Esercizio 1.1. Dimostrare che per ogni n € N é:

<i>1+2+-.-+<n_1)+n:@7
() 1+3+---+2n -1+ 2n+1)=(n+1)
(iii) 12+22+---+(n—1)2+n2:”< +1)6(2n—|—1)
B Soluzione di (i). Sia P(n) data da:
P(n) : 1+2+"-+(n—1)+n:w‘

Per dimostrare la formula data, basta usare il principio d’induzione matematica. A tal
fine verifichiamo la veridicita della P(0). E ovvio che per n = 0 i membri dell’uguaglianza
scritta sopra sono entrambi uguali a 0 e dunque P(0) ¢ soddisfatta.

Supponiamo ora che P(n) sia soddisfatta; vogliamo provare che anche P(n + 1) ¢ soddi-
sfatta. Essa afferma che

1424 tnd (1) OFEDAD L (ot Din+2)

2 2
Si ha:
n) n(n+1
I+2+--4+n+(n+1) o) %-Fn-i—l:
nn+1)+2(n+1) (n+1)(n+2)
B 2 B 2 '
Dunque il principio d’induzione matematica ci permette di affermare che la formula
n(n+1)

1424+---+(n—-1)+n= 5

e vera per ogni n € N.

Soluzione di (ii). Sia ora P(n) data da:
Pn) : 14+3+---+2n—1+2n+1)=(n+1)>.

Per dimostrare la formula data, anche qui basta usare il principio d’induzione matematica.
Verifichiamo la veridicita della P(0). Per n = 0 i membri dell’'uguaglianza scritta sopra
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sono entrambi uguali a 1 e dunque P(0) ¢ soddisfatta.
Supponiamo ora che P(n) sia soddisfatta; vogliamo provare che anche P(n + 1) & soddi-
sfatta, e cioe che

Pn+1) : 1434+ 2n+1)+2n+3) = (n+2)%.
Si ha:

1434+ @n+D)+Cn+3) 2 m+1)?+2m+3=

=n’+2n+1+2n+3=n"+4n+4=(n+2)>.
Dunque il principio d’induzione matematica ci permette di affermare che la formula
14+3+-+2n—1)+2n+1)=(n+1)
e vera per ogni n € N.
Soluzione di (iii). Sia P(n) data da:
n(n+1)(2n+ 1)

P(n) : 1*4+2° 4+ 4+ (n—1"+n*= c :

Usiamo anche qui il principio d’induzione matematica. Per n = 0 i membri dell'ugua-
glianza scritta sopra sono entrambi uguali a 0 e dunque P(0) ¢ soddisfatta.

Supponiamo ora che P(n) sia soddisfatta; vogliamo provare che anche P(n + 1) ¢ soddi-
sfatta, e cioe che

(n+1)(n+2)(2n+3) ‘

Pln+1) : P4+22+..-+n’+(n+1)?2= c
Si ha:
n 1)(2n+1
12+22+---+n2+(n+1)2p(:) n(n + )6(”+ >+(n+1)2:

nn+1)2n+1)+6(n+1)? (n+1)[n2n+1)+6(n+1)

6 6
(n+1)[2n*+n+6n+6] (n+1)(2n*+4n+ 3n +6)

6 6
(m+1)2n(n+2)+3(n+2)] (n+1)(n+2)(2n+3) '

6 6
Dunque il principio d’induzione matematica ci permette di affermare che la formula
n(n+1)(2n+1)
6
¢ vera per ogni n € N. [ |

PP+22 4+ 4+ (n—1)°+n=

Esercizio 1.2. Dimostrare che per ogni a,b € R en € N\ {0} é:

n—1
a" —b" = (a—0b) Z atpn R
k=0
B Soluzione. Poniamo

n—1
P(n) : a" —=b" = (a—b) Z atpntR
k=0
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Per n = 1 il primo membro dell'uguaglianza ¢ a — b, cosi come lo ¢ il secondo. Quindi
P(1) ¢ soddisfatta.
Supponiamo vera P(n) e proviamo P(n + 1), cioé che

n

an-l—l . bn+1 _ (CL . b) Z akbn—k )

k=0
Scriviamo
an+1 o bn+1 — an+1 - anb + anb _ bn+1 _
P n—1
=a"(a—b) + b(a" —b") ) (a—0b) [a" + bz akbn—l—k] _
k=0
= (a _ b)[an + " +abn—1 4+ .. _an—lb] _ (a . b)zakbn—k .
k=0

Pertanto per il principio d’induzione matematica, la formula proposta ¢ vera. [ |

Esercizio 1.3. Dimostrare la disuguaglianza di Bernoulli, e cioe, per a € R,a > —1
e pern € N si ha
(I1+a)">1+na.

W Soluzione. Posto
Pn) : 1+a)">1+na,

per n = 0 la disuguaglianza & soddisfatta (in tal caso vale I'uguaglianza). Tenuto conto
che 1 +a > 0 si ha che

P(n)
1+a)"'=0+a)1+a)" > (1+a)(l+na)=1+na+a+na>

>1+(n+1)a
e di conseguenza P(n) implica P(n + 1). Dal principio d’induzione matematica si ottiene
allora la disuguaglianza scritta. |

Esercizio 1.4. Dimostrare la formula del binomio di Newton e cioe che per ogni

a,be ReneNe
(a+b)" = Z (Z)akb”k.

k=0

B Soluzione. Per n = 0 la formula ¢ banalmente verificata. Posto

P() + (ot by =3 (Z)b

h=0
si ha che
n P(n)

(a+b)"™ = (a+b)(a+b)" =" (a+b) y (Z)ahbn—h:

n

_ T\ h+lpn—h —~ (n hin+1—h
(1.1) = (h>a b +hzzo<h>ab :

h=0
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Nella prima sommatoria di (1.1) poniamo k = h + 1 cosicché h =k —1 ¢

n

n n+1
Y\ hilpn—h _ n kin+l—k _ n krn+l—k
Z(h>a b = Z (k—l)ab _Z(k‘—l)ab .

h=0 k—1=0 k=1

Quindi sostituendo otteniamo

n+1 n
((l + b)n+1 — Z (k ﬁ 1) akbn-l—l—k + Z (Z) akbn-I—l—k —
k=0

k=1

- n kin+1—k n n+1 n n+1 - n kin+1—k
> (11 )t Qe )+ 2 (1)

(Bl Qv (e

Ora
n ny\ n! n! B
(k—1> i </<;> BCED R
_nlk+nln+1-k) (n4+1)!  [n+1
 klln+1-k)!  E(n+1-k)! ( k )
e quindi
ndl _ gl ~ (n+ 1) kpntl—k | ntl _ S <”+ 1) kpn+1—k
(a+0) b +; < L) b +a kZ:O L) b
che da la veridicita della P(n + 1). [ |

Esercizio 1.5. Dimostrare che 2"n! < n"™ pern € N, n > 6.
B Soluzione. Sia
P(n) : 2"n! <n™.
Per n = 6 si ha che 2"n! = 2°6! = 46.080 mentre n® = 6° = 46.656 e dunque la

disuguaglianza ¢ verificata. (Si osservi che per 1 < n < 5 la disuguaglianza ¢ falsa.)
Supposta ora vera P(n), proviamo P(n + 1). Si ha:

n+1
1
et 1 = (= Y (M e

k=0

1 1 1

1 3
=n"" + (n+ 1)n" + §(n+ Dn" =n" {n—{— §(n+ 1)] =

v

2 2
cio¢ abbiamo

(1.2) 2(n +2)n" < (n+1)"*".

5) 3 3 9
:n"<—n+—) :n"(Qn—i-n;_ > Znn<2n+§) >n"(2n +4) = 2n"(n + 2)
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Si osservi che, dall’ipotesi di induzione,
2" (n+ D! =2(n+1)2"n! <2(n+1)n"
per cui, tenuto conto della (1.2),
2"+ 1) < 2(n+ 1)n™ < 2(n +2)n" < (n+ 1)"*!
che & asserto della P(n + 1).
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2. ESERCIZI SULLE SUCCESSIONI E SERIE DI NUMERI REALI

Esercizio 2.1. Dimostrare che

lim Va=1

n—oo

pera € R a > 0.

B Soluzione. L’asserto ¢ banalmente vero se a = 1.
Se a > 1 allora /a > 1 e dunque potremo scrivere {/a = 1 + a,, con a, > 0. Allora

a
a=(1+a,)" > 1+ na, > na, da cui a,, < —. Pertanto
n

a
O<a, <-—
n

e dal teorema dei due carabinieri si ha lim a, = 0. Dunque
n—oo

lim {/a= lim(1+a,)=1.

n—oo n—oo
1 . 1
Se0<a<1lallora0< a<1le—->1. Sipone {/a = T , con a, > 0. Allora
a an,
1 1
a = — — e siccome ancora (1 + a,)" > 1+ na, > na,, segue che a,, < —.
(1+a,) na
Pertanto
1
O<a, <—
na
e dal teorema dei due carabinieri si ha lim a, = 0. Dunque
n—oo
lim /a = li ! 1 [ |
im /a = lim =1.
n—oo n—oo 1 —+ Qp,

Esercizio 2.2. Dimostrare che

lim ¢/n=1.

n—o0

12 2
B Soluzione. Si scriva {/n = ( C/ﬁ) = (" \/ﬁ> . Siccome n > 1, allora {/y/n > 1e

scriviamo {/4/n = 1 + a,, con a, > 0. Ne segue che

vn=(1+a,)" >1+na, > na,

da cui 0 < a,, < — e, per il teorema dei due carabinieri, lim a, = 0. Si ha allora
n—oo

\/ﬁ
lim /n = lim (W)zz lim (1+a,)*=1. [ |

n—oo n—oo n—oo
Esercizio 2.3. Calcolare
lim a™
n—oo

pera € R, a # 0.
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B Soluzione. Se a = 1 il limite proposto ¢ 1. Se a = —1 si ottiene la successione
{(=1)"}nen il cui limite non esiste.

Se 0 < a < 1, poniamo a = , con h > 0. Allora

1+h
1 < 1 - i

(1+h)" = 14+nh nh

e dal teorema dei due carabinieri segue che il limite proposto ¢ 0.
Se —1 < a < 0 allora 0 < |a| < 1 e per quanto visto nhjEO la|* = 0. Dunque per ogni

0<a™ =

e > 0 esiste n. € N tale che per n > n, sia ||a|"| = |a|” <e. Ora
" ={al -~ la] = |a-- a| = |a"|.
—_——
n-volte n-volte

dunque per n > n. & |a"| < €. Da questo segue che lim a™ = 0 anche nel caso —1 < a < 0.
n—oo

Se a > 1 allora scriviamo a = 1+ h, con h > 0 ¢ quindi a” = (1 + h)" > 1+ nh > nh.

Siccome lim nh = +o0o, per ogni K > 0 esiste ng € N tale che per ogni n € N,
n—oo

n > ng, si abbia nh > K e di conseguenza per lo stesso ng, se n > ng, si ha che a” > K

ovvero che lim a" = 4+o00.
n—oo

Se infine a < —1, scriviamo a = —b, per b > 1. Ne segue che a" = (—1)"b" e il limite
della successione {(—1)"b"},en non esiste in quanto le due sottosuccessioni
{(=1)*0*}ren = {0 brew e {(=1)* 0+ ey = { =%}y divergono rispettivamen-
te a +00 e —o0.

Ricapitolando si ha

0 se 0<lal <1
' 1 se a=1
lim a" =
n—00 +00 se a>1
non esiste se a < —1. |

Osservazione 2.1. Per a = 0 si ha la successione costantemente nulla ed € ovvio che
lim a”.
n—oo

Esercizio 2.4. Dimostrare che

lim Vn® =1

n—oo

per a € R.

B Soluzione. Per a = 0 & ovvio. Se a € N\{0}, i.e. « =m € N\{0}, allora
lim V/n™ = (lim /n) --- (lim Yn)=1.
n—00 n—00 n—0o0

J/

v~
m

Se invece o € Z\N allora si pone a = —m, per m € N\ {0}, e

n .o 1 . 1
lim vVn=™ = lim — = lim

n—o00 n—00 nm n—o00 ( 4 nm>

=1.
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In ogni caso per « € Z ¢ lim vn® = 1.

n—oo

Infine se a € R\ Z, tenuto conto che [o] < o < [a] + 1, con [a] € Z, si ha
Vnlel < /ne < plel+t
e dal teorema dei due carabinieri si ricava 1’asserto. |
Esercizio 2.5. Calcolare, per a € R, a # 0, lim ﬁ

n—oo Q"

n—oo Q" n—oo \ @

1 1 1\"
B Soluzione. Se 0 < a < 1 allora — > 1 e dunque lim — = lim <—> = +4o00. Poiche
a

anche lim n = 400, per 0 < a < 1 si ottiene

n—oo
. n . 1
Iim —=limn-— =+0c0.
n—oo " n—00 am™
Se invece —1 < a < 0 allora a = —b con 0 < b < 1. La sottosuccessione

{ 2k } _{Qk:}
(_1>2kb2k keN b keN

diverge a +00, mentre la sottosuccessione

{ 2% + 1 } __{_2k+1}
(_1)2k+1b2k+1 N b2k+1 eN

diverge a —oo. Di conseguenza non esiste il lim — per —1 <a <0.
n—oo (q

Anche per a = —1 questo limite non esiste, mentre per a = 1 il limite & 4o00.

Se a > 1 allora lim a" = 400 e lim — si presenta nella forma indeterminata “—7.
n—00 n—oo Q" o0

In questo caso y/a > 1 e scriviamo y/a = 1+ h, con h > 0. Allora
(Va)" = (1+h)" > 1+nh>nh

da cui a" > n%h? e quindi
n 1
< —< —.
a™  nh?

Applicando il teorema dei due carabinieri si ricava che lim — =0pera>1L
n—oo

Se invece a < —1 allora si ponea = —b,conb>1,e0<|—| = o < € per ogni
a
. n ) n
e > 0, per n > n,, essendo lim — = 0. Ne segue che lim — =0 per a < —1.
n—oo h" n—oo Q™
Ricapitolando,
+00 se O0<a<1
. n .
lim — =< nonesiste se —1<a<0
n—oo Q"

0 se a>1, a<—1. [ |
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Osservazione 2.2. Si noti che
n

lim — =400 se a>1
n—oo M

(essendo in tal caso a” > 0 per ogni n € N) mentre non esiste se a < —1.
Piu in generale,

pera>1lea>0.

Infatti

N RCNO)

dove si ¢ posto b = a"/* e b > 1. Per ogni K > 0 si consideri K/ > 0 e poiché

b
lim — = 400, si ha che esiste nx € N tale che, per n € N, n > ng, sia — > K,
n—oo M n
b\ b\
Quindi anche (—) > K e percio lim <—) = +400.
n n—oo n
Esercizio 2.6. Dimostrare che .
lim 4 _ 0,
n—oo n!
per ogni a € R.
1 a”
B Soluzione. Se |a| < 1 allora lim a" =0e lim — =0, dunque lim — = 0.
n—oo n—oo n! n—oo n!
Se a = 1 allora banalmente il limite proposto e nullo; se a = —1, per ogni £ > 0 si ha

che

—1)" 1

vt _ 1 <-—<e

n! n!' n

1 . "
per n > n., n. = [-] + 1. Dunque ancora lim — = 0.
€ n—oo n!

a
Se a > 1 poiché lim — = 0, per ogni € > 0 esiste n. € N tale che per n € N, n > n_, si

n—oo N,

1
abbia & < ¢. In particolare per € = 5 si puo prendere n > [2a] + 1.
n

Supponiamo allora di aver fissato &k € N con &k > [2a] + 1. Ogni n € N;n > k, & un

naturale maggiore di [2a] + 1 e anche k + 1 > [2a] 4 1, e cosi via i suoi successivi fino a

<1 a <1 a< d .
— — ecc., — < —, da cui
2" k+2 2 n 2

a” ak a”k a*  a a a

O _ = — = — ..
S TRt D-n K Et1kt2
k

n. Ne segue che

kE+1

_d1 o1 _d R (2a)k (1\"
K2 2 Kk \2 Ok \2)
N——

n—k

n
Ora lim <§) = 0, dunque l’asserto segue dal teorema dei due carabinieri.
n—oo
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an bn T
Se a < —1, posto a = —b, con b > 1, allora — = (—1)"— e poiché lim — =0,
n! n! n—oo n!
si ottiene che anche il limite proposto per a < —1 & nullo. |
Esercizio 2.7. Dimostrare che
lim Vn! = +o00 .
n—oo
n
B Soluzione. Sia K > 0, allora sappiamo che lim — = 0. Dunque per ogni € > 0 esiste
n—oo N!
n
n. € N tale che per n > n. si abbia — <e In particolare per € = 1 esiste n; € N per
n!

n
cui per n > n; sia — < 1. Questo accade se e solo se per n > ny € n! > K™ ovvero se
n

per n > ny & Vn! > K. Dalla scelta arbitraria di K > () segue allora che

lim Vn! =400 . [ |
n—0o0
Esercizio 2.8. Dimostrare che
) n!
lim — =0
n—oo NN

B Soluzione. Sappiamo che per n > 6 e 2"n! < n"; allora

n! 1\"
0< —< | =
e pertanto l'asserto segue dal teorema dei due carabinieri. [ |

Esercizio 2.9. Calcolare

lim vVn+1—+/n.

n—oo
B Soluzione. Basta scrivere
N (Vn+1—+/n)(vn+1++/n)
vn+1l++yn

da culi si ricava che

1

Esercizio 2.10. Sia {a,}, .y una successione divergente a +0c. Se b > 1 dimostrare che

B Soluzione. Senza perdere di generalita, si puo supporre che sia a,, > 1, cosicché la parte
intera [a,] > 1. Di conseguenza

Poiché

passando al limite per n tendente all’infinito, dal teorema dei due carabinieri si ha la tesi.
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Da questo segue anche che

B
a
li no=
nl—>ngolo ban 0
per ogni 5 € R. |
Esercizio 2.11. Calcolare
log n)? n®(logn)?
i 10877y, 7 (osn)”
n—00 n« n—00 am
pera>1, a,(>0.
B Soluzione. Per il primo limite, posto a, = log n, si ha che n = e e dunque,

dall’esercizio precedente, segue che

1 B B
lim —( 0g 1) — lim —n
n—00 ne n—00 (ea)a"

Per il secondo limite, posto a™ = ((v/a)")?, siccome v/a > 1, si ha

n*(logn)?  n* (logn)®  n* (logn)’ n

oV Ve T Ve e (Var

e ciascun fattore ¢ il termine generale di una successione convergente a 0. ]

Esercizio 2.12. Calcolare
. sinn
lim

n—>oo\/ﬁ.

B Soluzione. Osserviamo che

1
e dunque per ogni € > 0 esiste n. € N tale che, per n € N, n > n_, si abbia T < e.
n

sinn

NG

Allora per n > n., e < €, OVVero

. sinn
lim =0. [ |

n—00 \/ﬁ

Esercizio 2.13. Calcolare

lim (/n — 3) .

n—oo

Esercizio 2.14. Siar € Q e {a, }nen una successione per cui lim a, = 0. Allora
n—oo

1 "—1
lim —( + an) =

n—oo Qan,

r.

B Soluzione. Per r = 0 ¢ banalmente vero. Per r = p € N\ {0} si ha

—

p—1 p—
1 n)P —1
(1+an)p_1:an§ :(1+&n)k _ %:

k=0

(14 ap)*

ay, 0

e
Il
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da cui
-1 p—1 p—1
. (1+an)p_1_ . S k _ : k _ _
JLIEOG—H—JLIEOZ(1+an) = nirﬁlo(1+an) =) 1l=p.
k=0 k=0 k=0
Per r € Z\N, posto r = —p, p € N\ {0} si ha
l4+a,)?—1 . 1—(1+a,)?
lim(Jra) zhm&:
n—00 an, n—00 an(l —+ an)p

S E S S N

n—o00 an(l —+ an)p n—00 an, n—o0o (1 + ay,

Per r € Q\Z, poniamo r = P con p,q € Z\{0}, p e ¢ primi fra loro; senza perdere di
q

generalita, possiamo assumere p > 0. Si ha

Q4a?—1  [Q+a)7)" =1 (1+a,)"/7—1

ap (1+a,)/1—1 ap
dove
p—1
[T+ a)]" —1=[(1+a)" = 1] (1+a,)k",
k=0
quindi
(21> ( aa) — ( ag/) Z(l + an)k/p .

Scriviamo a, =1+ a, — 1= [(1 + an)l/q]q _ 1
Se ¢ > 0 allora
-1
an = [(1+ a1 =11 (14 a,)"?.
0

=)

e
Il

Se invece ¢ < 0, posto ¢ = —m, m > 0, si ha

3

an = [(1+a)™" =1=[1+a)"" =1] Y (1+a,)"" =

b
Il

_ [<1 + an>—1/q _ 1] qz (1 + an)_k/q _ 1— (1 + an)l/q qz (1 n an)—kz/q

1
k=0 <1 + a") i k=0
1.e.
14 a,)—1 3=
an:_( + a,) Z(l_i_an)fk/q.

(1+ap)ts
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Ne segue che

p—1
(14 a,)*1
k=0
| , q>0
(14 an)*4
(L+a,)P/1—1 ) k=0
an o p—l
(14 a,)*/P
—(1+an) 255 , 4<0
(14 a,)~*/a
L k=0
Quindi
( p—1
>
k=0 _ P
1
p/q _ —
lim (1 + an) L)
n—r00 [07%% p—1
1
k=0 _ P _ P
B e AR
d o
L k=0
In ogni caso
1 )Pl —
lim (1+an) _P .
n—00 ap, q
Osservazione 2.3. Piu in generale per a € R, si ha
1 n) =1
i LF @) =1
n—o0 an,
Esercizio 2.15. Calcolare
T 1
i JI(1-5s)
1 k?—1 kE—1)(k+1
B Soluzione. Poiché 1 — = ( ;{g i ), si ha
ﬁ Loy _ 13 24 (n-—1n+1) _ @-Dn+)! n+l
k2 22 32 n? 2(n!)? 2n
k=2
e pertanto
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! <nk3_1>
im )
n—oo 3

— k:2k +1

-1 (k=1 +k+1)
B+l (k+1)(k2—k+1)’
inoltre (k+1)> — (k+1) +1=k*+ k + 1 e dunque
1

i k—1 (k+1?—(k+1)+1)\
I - (i) (=) -

Esercizio 2.16. Calcolare

B Soluzione. Si ha

1200 o(n—1) 3P —-3+1 42—-4+41 (n+1?—(n+1)+1
0 3----(n+1) 22-2+41 32-3+1 n2—n+1 B
2n—D[(n+12*—-(n+1)+1] 2(n*+n+1)
B 3(n+1)!  3n(n+1)
Pertanto
N A
n—+o0 Pl +
Esercizio 2.17. Sia a € R, |a| < 1. Calcolare
: k
Jim 3 a"
k=0
B Soluzione. Dal fatto che
11— (1—a) Za”k —a)(@"+a" '+ tat+)=(1—-a)) d
k=0
X _an—i-l
h = — esi < 1, si ha ch
segue ¢ eZa T, ©siccome |al , si ha che
- 1—am 1
. k o . o
Jz&(}zga)—g&o im0 i-a "

Si noti che questo fatto permette di dire che la serie
“+o0o
>
n=0

detta serie geometrica di ragione a, converge per |a| < 1 ed ha somma S =

ovvero
—a

+oo
1
2.2 "= <1
(2.2 Y=g . ld

mentre diverge per |a| > 1. [ |
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Esercizio 2.18. Calcolare
. 1
li — .
nooo (; k(k + 1))
B Soluzione. Si noti che per ogni k € N\{0} &
111
k(k+1) k k+1

e quindi

3

pertanto
im (Z” ;> - .
n—o0 P k‘(k‘ + 1)

Si noti che questo fatto permette di dire che la serie

pPEEE.
— n(n+1)

detta serie di Mengoli converge ed ha somma 1.

Esercizio 2.19. Verificare che la serie
+oo

>
|
“— nl
converge.
n
B Soluzione. Poiché lim - = 0, segue che per ¢ = 1 si ha che esiste n; € N tale che
n—oo Nn!

11 1\" <= /1\"
er n > nq, sia — < — = | = | e dal criterio del confronto, poiché la serie =
converge, si ottiene la convergenza della serie proposta. |

La serie convergente
o0 1
(2.3) > .
n=0

si chiama serie esponenziale e la sua somma si chiama il numero di Nepero che si indica
con e, ovvero

Esercizio 2.20. Provare che la successione

1 n
() )
n neN\{0}



Esercizi sulle successioni e serie di numeri reali
e strettamente crescente.

B Soluzione. Osserviamo dapprima che

(nZ?:ﬁanZigz—ky:niZi1CD

da cul
n _n—l—l—k: n+1 ny 1 k n+1
k)] n+1 k k) n+1 ko)
Siccome — > —1, si ha che
n —+
k Bernoulli
1— 1 > 1— K
n+1 n+1
e quindi
k
n <(1- 1 n+1
k) — n+1 k
ovVvero
n < n k n+1
k)] —\n+1 k
cioe
n+1 >(n+1)k n
k — nk k
Allora

Cioe Upi1 > Qp.

Esercizio 2.21. Dimostrare che'

1 n
lim <1 + —> =e.
n—oo n

1E. Giusti, Analisi Matematica I, Bollati Boringhieri, Torino 1988, pp. 76-77

19
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B Soluzione. Dallo sviluppo del binomio di Newton si ha:

() SO EO Bt

“1nan—-1)--(n—k+1)(n—k)
:1+ZH nk(n —k)!

cioe

(2.4) <1+l>n:1+zn:i.n(n—l)---(n—kJrl).

Se s, € la somma parziale n-esima della serie esponenziale allora e = lim s,. Quindi per
n—oo

ogni € > ( esiste n. € N tale che perogni m € N, m >n.sihae—¢c<s, <e+e.
Dalla (2.4) si ottiene

, \" 1/ namn-1--(n-k+1)\ =1
i (14 0] =10 (i F T2 T

Quindi per ogni € > 0 e

1\" ) 1\"
sup{(l—l—g) }zhﬁ\m <1+5) >e—¢

che, dall’arbitrarieta di € > 0, da

1\" 1\"
sup{(l—i——)}Ze <= lim (1+—) >e.
n n n—o0 n

D’altra parte

nn—1)---(n—k+1) 1 1
— <
nk K~ k!
per cui dalla (2.4)
" L1 1
(14—5) <1+ i E:Sn
k=1 k=0
Pertanto
. " 1\"
lim (1+—) zsup{<1+—> } <sup{s,} =e.
n—oo n n n n
Allora
. " , 1\"
e < lim <1—i——> <e <= lim (1+—) =e. [ |
n—o00 n n—o0 n

Esercizio 2.22. Calcolare



Esercizi sulle successioni e serie di numeri reali 21

B Soluzione. Si ha che

n—1

U P P

e tenuto conto dell’osservazione precedente, si ha che

Esercizio 2.23. Sia r € Q, r > 0. Provare che

1 ™
lim (1 + —) =e.
n—00 rn

B Soluzione. Dal fatto che 0 < [rn| < rn < [rn] + 1, si ha

[rn] [rn] rn
1 1 1
(H—) §<1+—) §(1+—> <
[rn] +1 n rn
1 [rn]+1 1 [rn]+1
é 14___ fg 1+'___ )
rn [rn]

inoltre, poiché [rn] = m € N, si ha che

[rn] m
) 1 . 1
lim 1+ =lm [(1+—— ) =
n—00 [Tn]+—1 m—00 n1+—1

m—0o0
14+ —
m+1
e anche
1 [rn]+1 1\™ 1
lim (1+—) = lim <1+—) <1+—>:e.
n—oo [’f‘n] m—0o0 m m
Dal teorema dei due carabinieri, si ha la tesi. |

Esercizio 2.24. Provare che il numero di Nepero e ¢ un numero irrazionale e che 2 <
e < 3.
o0

. . 1 . . .
B Soluzione. Poiche e = g —, e= lim s, = sup{s,}, s, somma parziale n-sima
n! n—00

n—0 neN
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della serie esponenziale. Si ha

> z";l 1+1+1+1—|— —|—1>2
e> 8, = — = —
- k! 2! 3l n!
k=0
Per provare che e & un numero irrazionale, seguiremo la dimostrazione di Fourier.

Per assurdo si supponga che e € Q, i.e. e = P con p,qg € N, p,g > 1 perche e > 0.
q

Fissiamo ng € N, ng > ¢ > 1: allorang > 2 e
no! =1---(¢—1)q(g+1)-ng

per cui

no!

Inoltre se n > ng allora s,, > s,,, dunque e > s,, > s,,. Ne segue che

P
0 < ng! (e — sp,) = no! (5_8"0> —p—— ‘Zk'

no |
No-

R
k=0

=pmo—

|
dove, poiché 0 < k < ng, & nk_ = (k+1)---ny € N\{0}. Quindi da

no n0|
pmgy — ? >0
k=0
segue che
nol (e —sny) EN e ngl(e—s,)>1
Ora per ogni n € N, si ha
3 g et > ok
s =3 — =35 On , Op= —_—
R N T T "= (g + k)
o, essendo la somma parziale n-sima della serie a temini positivi

[e.e]

1

n=1

Allora 0, = Spg+n — Sny, P€r 0gni n € N, percio

lim o, = hm (snﬁn Sng) = € — Spy -

n—r00
Inoltre

1 “ TL()!

’Tlg! Op — n()! —_— = i
; (n0+1€)' 1 (n0+k‘)'

n()! 77,0! TL()!

= - bt ———— =
1 1 1

:n0+1+(n0+1)(n0+2)++(n0+1)(no+n)
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n

1
TS (g + D(ng+2)+ -+ (ng + k)
dove
£n0 +1)(ng+2)---(ng +k2 > (ng + 1)F
k—fattori
percio

n 1 k
nO!O-nS ( > =Tn ,
; n0+1

T, somma parziale n-esima della serie geometrica a termini positivi

() 2 ()

n=1 n=0

che converge a

1 ng + 1 1
gt
_ 1 o o
ng + 1
1 . 1 . T
Pertanto 7,, < — per cui ngl o, < —, per ogni n € N, che implica
no o
. 1
lim (nglo,) < —.
In definitiva
1 1
1 < ngl(e—sn,) =ne! lim o, = lim (nglo,) < — < =
n—00 n—00 ng 2

che ¢ assurdo. Di conseguenza e € R\ Q.
Abbiamo gia visto che e > 2. Proveremo che e < 3. Siccome per k > 1,

Kl=1-2-3--k=2-3 ... k>2k1
—_—
(k—1)—fattori

si ha

n+1 1 n+1 1 n+1 1 k—1
Sn<8n+1:ZE:1+ZES1+Z<§> =

k=0 k=1 k=1
n 1 h
ETERDY (5) —lto
h=0
per o, somma parziale n-sima della serie geometrica a termini positivi Z (5) che ha
n=0
somma 0 = —— = 2. Allora
1— =
2
e =sup{s,} <sup{l+o,} =1+sup{o,} =1+2=3
neN neN neN

cioe risulterebbe e < 3, ma essendo e ¢ Q, si ha e < 3. [ |
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Esercizio 2.25. Calcolare i sequenti limiti di successioni

. o 2 1 n
(1) fim O o o og (Hﬁ) |

nso n2—n+6 n—o0

B Soluzione di (1). Poiché

sinn — cos n? - | sinn| + | cos n?| - 2
n2—n-+6 nz—n-+6 “n2—n+6
e lim ———— = 0 segue che
nﬁoon2—n—{—6 &
sinn — cosn? 2 -
€
n?2—n+6 | n2—n-+6

per n € N, n > n., per un certo n. € N. Dunque

_ sinn — cosn?
lim ————=0.

1 n
Soluzione di (2). Poiché lim (1 + —) = ¢ allora
n—0o0 n

1 n
lim log (1+—) =loge=1.
n

n—o0

Esercizio 2.26. Calcolare 1 sequenti limiti di successioni

i C @ S

B Soluzione di (1). Abbiamo

tim 2" (im 29) <1im ”—) = +o0.

n—oo n! n—oo n—oo Ml
Soluzione di (2). Poiché lim {/n =1e lim /n = +oo allora
n—oo n—oo

hmﬂz

400 .

Esercizio 2.27.

Vi — 4

(2) lim ——

. Yn+2
(1) lim o

n—00 \/g — % ’
B Soluzione di (1). Poiché lim {/n = 1 allora
n—oo
Wn +2 3

lim =

noo/3—n V3-1
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13 2

Soluzione di (2). Il limite si presenta nella forma indeterminata . Proponiamo

813

due diversi modi per risolverlo. Per via algebrica:

lim Y4 _ﬁhm\/ﬁ(l_%>_\/§ .ml_%_ V2

nN—0oo /) — _noo _’I'LOO1 9
BVE VT 2tk T YT 2R T
NG

1
perché lim — = 0. In altro modo notando che sia il numeratore che il denominatore
n—oo v/MN

1
sono infiniti di ordine 3 si ottiene che il limite & il rapporto dei coefficienti di y/n, cioe

lim Vi — 4 —\/—5. ]

n—00 \/_ —\2n N 2
Esercizio 2.28. Calcolare 1 sequenti limiti

R VE IR RS VL) ' ] L\
W s ey 0 B (5*%) |

00
B Soluzione di (1). Il limite si presenta nella forma indeterminata “—7”. Anche in
00

questo caso mostriamo due diversi modi per risolverlo. Per via algebrica si ha

iy L2
ni/4 4 pl/s 49 nl/20 " 1/4
lim = lim

mosto 123 — B L3 noseo 1 TN\
R

L= nl/3 + n2/3

1 2

14—+
1
:<hm—> lim — 20 Mg

oo 1 3
Cpl/B + n2/3

1
In altro modo, tenuto conto che il numeratore e un infinito di ordine 7 il denominatore

2
e un infinito di ordine 3 e che 3 > 7 ¢ immediato che

) n1/4 +n1/5 + 2
S S A3

0.

Soluzione di (2). Abbiamo

I 1+1 n—l’ 1\" 1+1 n_

e \2 2 ) T B \2 n) =

1\" 1\"

:<lim (—))(hm <1+—>)
n—oo \ 2 n—00 n

Il
o
[

Il
o
|
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Esercizio 2.29. Calcolare i limiti

1) lim (1— 3in>% C(2) lim (2+%>n |

n—o0
B Soluzione di (1). Si ha

2. 2/3
1 2n 1 3 3n 1 3n
lim {1 — — = lim |1— — = lim 1—— =23,
n—00 an n—o0 3n

Soluzione di (2). Anche qui si ha
1\" 1 2n/2
lim <2+ —) = lim 2" (1 + —>
n—oo n n—o0
2 1/2
= (e 1, ((1 “a) ) = e

on\ 1/2
1
lim 2" =400 e lim <<1+—) )
n—o00 n—o00 on

Esercizio 2.30. Calcolare 1 sequenti limiti

) 1 1\" ) 1\"
W (5g,) @ () ez
B Soluzione di (1). Abbiamo

3.5
5 3
) 1 1\" . 1\" 1
,}Lﬂso(§+5—n> :35&(5) 1+§—n
3

perché

N\ 3/5

5
3
. 1\" : 1 35
(i (5) ) L [ |15 =0 =0.

Soluzione di (2). Abbiamo

1\" 1\ 1/a
lim (1+—) = lim ((1+—> > =el/e,
n—oo an n—oo

Esercizio 2.31. Provare che

LSS E
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n

n
B Soluzione. Posto a,, = —3 pern # 0, si ha che
n!

a1 (n+1)"t (n!)? n+1 n —i— 1 e
= = < <1
an, (n+1)12 nn n n+1 n+1

92
pern>[e—1]+1=2;pern=1sihaa =1, ay = 2——1dacu1a1<a2 Pertanto la

successione {ay, }nen € decrescente e quindi lim a, = 1n§ {a,}. Siccome a, > 0 per ogni
n—oo ne
n €N, ¢ inf{a,} > 0 per cui lim a, > 0.
neN n—o00

Sia ¢ = lim a,, allora
n—oo

O S an—l—l S (7%

n+1
e passando al limite per n — oo si ha

0</¢<?¢-0=0 ovvero £{=0. [ |

Definizione 2.1. Una successione si dice regolare se ammette limite (finito o infinito).

Esercizio 2.32. Sia {a,}nen una successione regolare. Dimostrare che anche la

. al + “ e _|_ a/n .
successione { ————},>1 € regolare e che
o >
.apt o tan .
lim ———— = lim a, .
n— oo n n—oo

B Soluzione. (I) Supponiamo che lim a, = ¢; posto b, = a, — £ si ha che lim b, =

n—oo n—oo
poiché
bbby . a e tan—nl . (ay - day
lim ———— = lim = lim | —— —/
n— 00 n n— 00 n n— 00 n
N o . .
basta provare che lim L " 0. Per ogni € > 0 esiste n. € N tale che per
n—oo n

. € . <qe - .
n > n. sia |b,| < 3 inoltre {b, }nen € limitata per cui esiste L > 0 tale che |b,| < L

per ogni n € N. Allora

by by [
R U Y A A B L L1
n n n n
/ o /
Mep mTMeE Mg,
n n 2 2
!/ !/
pern—L<£1epern>n€—[ ”a]_|_1
n 2’
(IT) Se invece lim a, = +oo allora per ogni M > 0 esiste n)y, € N tale che per

n—oo
n > n), sia a, > M. Pertanto ¢ anche a,, > M per n > 2n/, e
ap+---+a, G+t ay,  Gp g1t Ay

= + >
n n n

et togl nemy

n n
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L
Sia Ly = |a; +---+ anh|. Poiché lim =% = 0, per ogni € > 0 esiste n. € N tale che per
n—,oo M

. Ly .
n > n. sia — < . Sia ny; = max{n/;, n.}, allora per n > 2n,; &
n

ay+---+ap n—n
S T s ey — My
n n
Ora
n—ny  2n—2ny  n+(n—2ny) no 1
n o 2n N 2n on 2
Per K > 0 prendiamo M = 4K, ¢ = K e ng = 2ny;: avremo che per n > ng e
. 1
Gt tan L
n 2
OvVVero
.ap et an .
lim ———— =400 = lim q, .
n—o00 n n—o00
(III) Se lim a, = —oo allora lim (—a,) = +o00, dunque
n—oo n—oo
g @ e () e ()
n— 00 n n— 00 n
= — lim (—a,) = lim a, = —© . [ |
n—oo n—o0
Il numero
a + - +a,
n
si chiama media aritmetica dei numeri aq, - - - , a,.

Esercizio 2.33. Sia {a,}nen una successione di numeri non negativi regolare.
Dimostrare che anche la successione {/ay -~ an, }n>1 € regolare e che

lim a;---a, = lim a, .
n n
n—oo n—0o0

B Soluzione. (I) Se lim a, = 0, per ogni € > 0 esiste n. € N tale che per n > n. si abbia

n—0o0
2 [3%ay-ay
n < —¢€ —E‘
e R | S T2

2
la,| = a, < 36 cosicché

Poiché
377«;; A+ Qo
lim 7/ =1
n—00 (25)”5
allora esistera n” € N tale che per n > n” si abbia
ngnéal...ané 1 <1
(2e)ne 2
cosicché per n > n" ¢
ngnéal...an,6<3
(2e)ne 2
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Sia n. = max{n.,n"}, allora per n > n. si ha

<O< <2 n3nlsa1...an/<
—€ < Yay---a — € — <
"3 (2e)n

e quindi

lim Va; - -a,=0= lim a, .

n—oo n—oo

(II) Se lim a, = ¢ # 0 allora posto b, = % g ha Lim b,=1¢e

n—s00 V4 n—o0

. X n al “ e an
lim /by ---b, = lim )
n— o0 n—oo /

Se proviamo che
lim \/by---b, = lim b, =1

n—oo n—,oo
allora
. vai---an . .
lim Y~——=1 ovvero lim Va;---a,=¢= lim a, .
n—00 I4 n—00 n—00

Poiché lim b, = 1, per ogni o > 0 esiste n), € N tale che per n > n sia |b, — 1| < o i.e.
n—oo

l—o<b,<1+0

da cui
(1—0)"<(A—0)"" <bpyir-by<(1+0)" " < (1+0)"

l—0<Ybpi1-by<l+4o.

D’altra parte 7}1_{20 {/by---by =1, pertanto in corrispondenza a o esiste n,, € N

e quindi

tale che per n > n/ sia

l—0o< /by by <1+o0.

Quindi posto n, = max{n.,n”}, per n > n, si ha

(1—0)? < /by--b, < (140)?
dove (1-0)’=1-20+0*>1-20>1-30.
Sia 0 < e < 3 e siprenda o = %; allora (1 — 0)? > 1 — ¢ mentre (poiché¢ 0 < o < 1)

(1+0)>=1+20+0?<1+30 =1+e¢e. Di conseguenza per n > n, = n. si ha

l—e< b b <l4e  ovvero W%~bm—w<e.

€
Se invece € > 3, si prenda o = \/; > 1 cosicché 1 —e =1 — 302 < 1 — 30 mentre

(1+0)?=1+20+0?<1+30%=1+c¢dacui per n > n, si ha

l—e< b b, <l4e  ovvero ’WmuwW—Q<g.

In ogni caso
lim /by---b,=1.

n—oo
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(III) Se nh—>r20 a, = +oo allora per ogni K > 0 esiste n, € N per cui a,, > 2K per

n > nl, quindi

C/al...an:> {7a1...anK. P/(zj()n—nK':: n/g%éjéiéiﬁ..Q}(

.anK

. 17
dove 0/ @y
abbia

= 1. Quindi per ogni € > 0 esiste n. > 0 tale che per n > n. si

a’l"'a'n
l—e< p/—7 <1 )
€ (QK)nK + e

1
In particolare per € = 3 esiste n” € N tale che per n > n” sia

ag--- anK) l

(2K)nx 2

Si prenda nxg = max{n/,n"}, allora per n > nk si ha
2K ) .
Yay---a, > — ovvero lim a;---a, =+oo = lim a, . [ |
2 n—o0 n—o0
Il numero

Y ai .- Qy
¢ detto media geometrica dei numeri aq, - - - , a,.
Esercizio 2.34. Si provi che

a; + -+ ay

Esercizio 2.35. Sia {a,}nen una successione di numeri positivi. Dimostrare che

. . An+1
lim ¢/a, = lim —— .

n—00 n—00  (y

B Soluzione. Si consideri la successione (di numeri positivi) {b;, }nen cosi definita:
a/n

bp=ay , b,= per n>1.
(p—1
Allora
lim v/by---b, = lim b, = lim b,
n—oo n—oo n—oo
dove
. . a1 a2 ap .
lim +/bg---b, = lim plag— —--- = lim a,,
n—o00 n— 00 ag ai Ap—1 n—o00
© a
. . n+1
lim b,.1 = lim .
n—o00 n—00  (y,
Dunque
. . Ap+1
lim {/a,, = lim ) [ |
n—00 n—00  (y

Come applicazione dell’esercizio precedente svolgiamo il seguente
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Esercizio 2.36. Calcolare

“/m!
lim i
n—oo n

W_nn!
- Ve

quindi applicando il risultato dell’esercizio precedente si ha

B Soluzione. Notiamo che

! (n+ 1) n" , (n+1)n!  n"
lim =lm ——— — = — =
n—oo 1 n—oo (n + 1)"+1 nl n—oo (n+ 1)"(n+1) n!

i n \" ) n+1-1\"
= lim = lim | ——— | =

1 n+1 1 —1 1
= lim [1— 1-— =-.
n—00 n+1 n+1 e

Esercizio 2.37. Siano h,k € N, 1 < h < k. Dimostrare che

lim ¢ hn ——kk
n=oo \| \hn) — hh(k — h)k=h

B kn
n = hn
dall’Esercizio 2.33 si ha
<k(n + 1)) (lm + k)
N 0 A h(n+1)) . hn + h
i (hn) R sm wa e Sy
hn hn
kn+kY\ (kn + k)!
hn+h)  (hn+h)[(k—h)n+ (k—h)]!

(kn)! (kn+1)--- (kn + k)

B Soluzione. Posto

n—o0

dove

(hn)! (hn+1)---(hn+ h) [(k —h)n]'[(k —h)n+1]---[(k — h)n + (k — h)]
Allora

(zz i l;) (kn)! ﬁ(kn +7)

j=1
= X
h k—h

(hn+3) | ] [(k = h)n + j]

1 =1

S T

(hn)![(k — h)n]!
(kn)!

<
I

31
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T h k—h
H hn + j) H [(k — h)n + j]
7j=1 7j=1

Notiamo che, in quest’ultima frazione, il numeratore e il prodotto di £ monomi in n di I
grado e percio ¢ un polinomio in n di grado k; il denominatore ¢ il prodotto di A monomi
in n di I grado e di £ — h monomi in n di I grado, quindi e il prodotto di un polinomio
in n di grado h e di un polinomio in n di grado £k — h. Dunque il denominatore ¢ un
polinomio in n di grado k. Osserviamo poi che il coefficiente di n* al numeratore ¢ k*, al
denominatore ¢ h"(k — h)*~" percio

(lm+k) ﬁ(/erj)
1

lim kn\ . hn + h oy j=1 B
wboo \[\hn) = wB% ™ [kn oo B h—h -
hn [T0m+ ) [Tik = hyn+ ]
i=1 j=1
k
_ . m
1 (k — R)F—h

Esercizio 2.38. Dimostrare il sequente criterio

Teorema (Cesaro-Stolz). Sia {b,}nen una successione a termini positivi strettamente
crescente e divergente. Allora per ogni successione {ay, fnen Si ha
Ap4+1 — Qp

lim 2% — Lim
1m — =
n—oo b,  n—oo b, — by,

Esercizio 2.39. Verificare che le sequenti serie convergono e determinarne la somma:

Zm . aeN\{0},

n=1

°° 1
nz%(njta)(n—l—b) , @b EN\{0}, azd.

B Soluzione di (1). La serie ¢ convergente perché

2 bt
n(n+a) n?

e dal criterio del confronto segue quanto detto. Si decompone

111
nn+a) a \n nita

cosicché la somma parziale n-sima e

- 1 1 /1 1
Sy = — == - — =
;k(k:—l—a) a l(k k—i—a)

k=

n(n+a) >n
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_12":1 Lo L1
Ca ko k+1 k+1 k+2 k+2

k=1

k=1 k=1
Allora
N IR |
lim s, = — lim - —
n—oo aQ n—oo l{ n —|— k’
k=1 k=1
che da la somma della serie
1 — 1
S =- —
a k
k=1

Soluzione di (2). Come in (1), la serie ¢ convergente perché
1
(n+a)(n+0b)

1
(n+a)(n+b)>n = <.

Per calcolarne la somma si decompone

1 A B

(n+a)(n+b) —n+a+n+b

determinando A, B € R in modo che 'identita sia soddisfatta. Si ricava che A = ; =
—a

—B e quindi

1 1 1 1
(n+a)(n+b) b—a\n+a n+b/)’
Siamo allora ricondotti a trovare la somma della serie

1 1 1
b—a ;(n—%a_n%—b) '

Senza perdere di generalita, si puo supporre che sia b > a; sia s, la somma parziale n-sima

1 1
della serie Z( — —) e poniamo ¢ = b — a € N. Allora
“\n+a n+b
& 1 1 & 1 1
S”_kz:%(k+a_k+b) _§(k+a_k:+a+c> N

_k:O (k’+a—k—|—a—|—1+k+a+1 _k—l—a—|—2+k+a+2_



34 Elisabetta Barletta

1 1 1
_”'_k+(z—i—c—1+k+a+c—1_k+a+c)_
u 1 1 " 1 1
(et i) St )
— k+a k+a+1 prt k+a+1 EkE+a+2
~ 1 1
+"+;(k+a+c—1_k+a+c>_

1 1 1 1
=l-—— | + — +
a n4+a+1 a+1 n+a+2
1 1
a+c—1 n+a+c

1 1 1
a a+1 a+c—1

1 1 1
n+a+1 n+4+a+2 n+a+c
e da questo segue che la somma della serie

1
Z (n+a)(n+0b)

n>0
¢
c—1 b—a—1
1 1 1
S = 2 lim s, =

—a n—oo b—a k:Oa+k b—a — a+k
ovVvero
(2.5)

Z 1 B 1 b—a—1 1 .

(n+ta)n+b) b-a = atk

Esercizio 2.40. Verificare [’eventuale convergenza delle serie

D= S peN{n).

n>1 n>1
B Soluzione di (1). Poiché n > 1, si ha:
111
ne — e (en)"

Ora e™ > e per n > 1, dunque

: (1 )n
2 S -
ner e

1 n
e siccome la serie geometrica E (— converge, dal criterio del confronto converge anche
n>0
la serie proposta.
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Soluzione di (2). Il termine generale della serie ¢ a,, = ——» dunque la serie ¢ a termini
nPe
positivi e
) 1
lim =0
n—oo nPem
quindi ancora non si puo dire niente sul comportamento della serie. Si ha

a1 nPe” 1 nP 1 1

G (nEdpertt e, (1 + l) e (1 + l)
n n

dove
1 p
(1 + —) > 1
n
quindi
an 1
H o2
an, e
per ogni n € N, n > 1 e dal criterio del rapporto, la serie converge. |

Esercizio 2.41. Verificare [’eventuale convergenza delle sequenti serie numeriche

+oo +o0
3" 44" 3"
S SE= =T S
n!
n=0 n=0
. . . . PR . . 34"
B Soluzione di (1). La serie ¢ a termini positivi e il termine generale ¢ a,, = g S

ha

L3t ar AN
i 25 = (5) [(5) =

che non permette di concludere nulla sul comportamento della serie. Tuttavia

3 n
-] <1
per ogni intero n > 1, dunque

AN"T/3\" 1] <9 4\"
an = — — ~ - .
5 4 5
o . . 4\" o
Poiché la serie geometrica Z <5> converge, dal criterio del confronto, converge anche
n>0
la serie data.

n
Soluzione di (2). Qui a, = —~ quindi la serie ¢ a termini positivi con
n!

che non permette di concludere sul comportamento della serie. Ora

Uns1 3ntl n! 3

an  (n+1)! 3 n+1
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per n € N. E sempre possibile ad esempio avere

3 1
< —
n+17— 2
se n > 5. Pertanto per n > 5 si ha
An1 1
<-<1
an, ~ 2
che, dal criterio del rapporto, da la convergenza della serie data. |

Esercizio 2.42. Studiare il comportamento delle sequenti serie delle sequenti serie nu-

meriche
+oo 4

+o00
2 n
1 " 2 — .
COID SR P
n=0 n=1
B Soluzione di (1). Il fatto che lim 37" = 0 non ci permette ancora di concludere niente

n—oo

sul comportamento della serie. Poiché 3"* > 3" allora
1 n
37 < (=
<(3)

. . . e (1Y .
per ogni n € N e siccome la serie geometrica E 3 converge, dal criterio del confronto,
. n=0
la serie data converge.

Soluzione di (2). Si noti che

dunque ancora non possiamo concludere niente sul comportamento della serie.

Si ha
a1 (n4+1)' 47 1 Ll *
a,  4ntl nt 4 n

esen>1¢

1\
(1 + —) <2
n
da cui
An+1 < 1
a, 2
che prova, dal criterio del rapporto, la convergenza della serie. [ |

Esercizio 2.43. Verificare I’eventuale divergenza delle sequenti serie numeriche

HmYn @yt

B Soluzione di (1). Poiché



Esercizi sulle successioni e serie di numeri reali 37

ancora non possiamo concludere niente sul comportamento di questa serie. Si ha
n1  (n+1)V n»  on \" ) I
a, (n+1)ntt pl o \n4+1/) n+1

_ 1 \" 1\ 1 1
lim (1 — = lim (1-— 1-— = — .

1
Scelto € = —, si ha che esiste n. € N tale che, per n > n,, sia
e

1 " 1
(1— )<—<1,
n+1 e

dunque, scelto n > n.+ 1, dal criterio del rapporto, si conclude che la serie data converge.

dove

1
Soluzione di (2). La successione {—},en fo} € decrescente e convergente a 0. Dal criterio
n

di Leibnitz la serie data converge. |

Esercizio 2.44. Provare se le sequenti serie numeriche convergono

+oo +o0

n+1 n+1
1 —1)"—— 2 —-1)" )
B Soluzione di (1). La serie ¢ a segni alterni; si osservi che
n+1
lim (=1)" —— =0
dunque non si puo concludere niente sul comportamento della serie. D’altra parte, posto
n+1
Ay = ———
n?+ 2
. 1 2 o . : .
si ha ag = 27 a, = 3 quindi ag < ay, mentre si verifica facilmente che a,.; < a, per
n > 1. In ogni caso la successione {a, },eny non e decrescente anche se lim a,, = 0. Non

n—oo
possiamo allora usare il criterio di Leibnitz. Tuttavia

+o00 400

n+1 1 n+1
_1n—:_ _1n
Y e

n=0

dove adesso, per il criterio di Leibnitz, la serie

f(_wnn—l—l
n?+2

n=1

converge. Pertanto la serie data converge.

Soluzione di (2). Anche questa serie & a segni alterni. Qui

1
lim (—1)"
n—00 2n —1

non esiste, pertanto la serie diverge. |
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Esercizio 2.45. Determinare il comportamento delle sequenti serie numeriche

2 R 3
(1) Z\/ﬁ+5 o (2) Z(n+1)(n2+4)‘

n>0 n=0

B Soluzione di (1). La serie data ¢ a termini positivi e

. 2 . 1 2
1m = l1im —= E———

vn

quindi non si puo ancora concludere niente circa il comportamento della serie. Si osservi

=0

pero che per n — oo il comportamento della successione {m}HEN e lo stesso della
n

1
successione {ﬁ}neN. Allora

dove per n > 1

5
1+ —=<1+5=6,
n
di conseguenza
2 >1
5 __-
14+ — 3
n
Pertanto per n > 1
2 11
>
Vn+5 73 n
e la serie
ZL
n>1\/ﬁ

diverge. Dal criterio del confronto la serie data diverge.

Soluzione di (2). La serie data ¢ a termini positivi e

1
lim = lim — 3 =0

e D2+ ) noe <1+l> (1+i2>
n n

3
(n+1)(n%+4)

quindi il comportamento della successione { tnen € come quello della
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1 1 4
successione {—},>1. Sihal+—>1,1+ — > 1 per n > 1, quindi
n3 "= n n

3
<3.
1 4
14— 14 —
n n
Allora pern > 1 e
3 1 3 - 3
D(n2+4) nd 1 4 n?
(n+1)(n?2+4) n (1+—)(l+—2) n
n n
: : 1 .
e siccome la serie Z — converge, converge anche la serie data. |
n

n>0

Esercizio 2.46. Verificare [’eventuale divergenza delle sequenti serie numeriche

(1) f%z (2 le(ﬁi;)

n=1 n=0

B Soluzione. Per le due serie (entrambe a termini positivi) si ha

3
e . n+1
e =t limd

e questo basta per dire che le due serie divergono. |

Esercizio 2.47. Calcolare la somma delle serie

CHID DETNNCIE

B Soluzione. Le serie sono entrambe assimilabili alla serie esponenziale (2.3) e precisa-

mente:
—+o0 +o0
1 1 1 5
Zazzm—<1“+§) -2
n=3 n=0
e

+00 3 +00 1
> =3 > —=3e. u
n=0 n=0

Esercizio 2.48. Determinare, se possibile, la somma delle sequenti serie

+00 . 9 n 400 1
(1) 2= (5) @ e

n=2 n=3

B Soluzione di (1). La serie ¢ assimilabile alla serie geometrica

>(-5)

n=0
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che converge alla somma S = g (cfr. (2.2)). Allora

—+00

> (="

n=2

)

£(3)-(-)

n—=

Soluzione di (2). La serie ¢ assimilabile alla serie

perché si scrive

Ry 1
7; 2n+ 1)(n+3)

1 [ 1
2 (Z (n+1)(n+3) _E> ‘

400 1

Z% (n+1)(n+3)

o= 1 1 1 1
<2<n+1><n+3>‘§‘§—ﬁ>

n=

n=0

converge e ha somma (cfr. (2.5))

1
1 1 1 1 3
S 2%/”1 2(+2> 4
Allora
3 ! _ (3 2y _ 9
—~2(n+1)(n+3) 2\4 40/ 80

e Si osservi che I'esercizio puo essere risolto anche nel modo seguente.
Posto m = n — 3, la serie si riscrive come

o0

1
ZO 2(m + 4)(m + 6)

che dunque ha somma

o
Per « € R e k € N il fattore binomiale a su k ¢ il numero reale non nullo ( k) cosl

definito:
«
k=0 :
per k=0, (O)

«Q
k>1 =
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Esercizio 2.49. Sia a € R; provare che la serie
) (a> ’
> (,)e
n
n=0

¢ assolutamente convergente per |a| < 1.

dobbiamo provare che la serie a termini non negativi

B Soluzione. Posto b,, = ‘ (a) a”
n

Z b, converge per |a| < 1. Se a = 0, la serie ¢ la serie nulla e dunque convergente. Sia

n=0
oo

dunque a # 0, cosicché la serie E b, € a termini positivi e

n=0
¢ )t 04(04—1)'--(Oz—(n—|—1)+2)(a—(n+1)+1)an+1
but |\ +1 (n+1)! B
by a\ L ale—=1) - (a—n+1) N
a
n n!
la(a—=1) - (a=n+1)(a—n)| n! 1l \a—n|||
= a| = al .
la(a—1) -+ (¢ —n+ 1) (n+1)! n+1
Percio
o bpyr . a—m|
lim —— = lim la| = |a]
n—o00 n n—00 TL—|—1
e se |a| < 1, la serie an converge. |
n=0

Esercizio 2.50. Sia {a,}nen una successione positiva decrescente. Dimostrare che le
o0 o0

serie E s E 2" aon hanno lo stesso comportamento.

n=0 n=0

oo (o] o0 o0
B Soluzione. Poiché E a, = ag + E a,, basta provare che le serie E ay, E 2" agn

n=0 n=1 n=1 n=0
hanno lo stesso carattere. Entrambe queste serie sono a termini positivi quindi le succes-

sioni delle loro somme parziali

n n
Sy = g ag , Op= E 2k(l2k
k=1 k=0

sono strettamente crescenti. Percio
lim s, =sup{s,} , lim o, =sup{o,}.
n— 00 n>1 n— 00 n>0
Proviamo, per induzione su n > 0, che
(2.6) Sont1_1 < O -

Infatti per n =0
So_1 =81 =a1 =0g .
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Ammessa vera la stima (2.6) per n, proviamola per n + 1. Si ha

2n+1

Son+2_1 = Son+1_1 + QAon+1 + a2n+1+1 + e + Qon+2_1q S Son+1_1 + A9n+1 S
>

~
2n+1 addendi
< op+ 2" g = Onil -

Dal principio di induzione matematica, la disuguaglianza (2.6) ¢ dunque vera per ogni
n > 0. Siccome 2" > n per ogni n > 1, si ha n < 2" — 1 per cui s, < sgni1_; € la (2.6)
da

(2.7) Sp<0p, , nm>1.
Proviamo ora, per induzione sun > 1,
(28> o < 282n .

Infatti, poiché ay < ay, per n =1 si ha
op=a1+2ay=a1+as+as<2a1+ay<2a,+2ay=25s,.

Ammessa vera o,, < 2 S9n, per n + 1 si ha
n+1
Ontl1 = E 2k Aok = Op + 2n+1 Aon+1 < 2 Son + 2n+1 Aon+1 =
k=0

= 2890 + 2" agnt1 — 2agnt1 + 2agni1 = 2890 + 2(2" — D)agns1 + 2 agn+1 .
Per1<k<2"—-1¢
M4 1 <M 4 k<4 —1=292" 1 =2o" _ 1 <ontl

Percio
Qon+1 §a2n+k s 1Sk§2n_1
Pertanto
2(2” - 1)a2n+1 = (2" - 1)(a2n+1 + a2n+1) = (a2n+1 + CL2n+1) + -+ (a2n+1 + a2n+1) <

[ S
-~

(27—1) addendi

< 2a9n41 +2am 49 + -+ 20904901 = 2(Agny1 F Gongg + o F agniig)
Ne segue che
On+1 <2 Son + 2(a2n+1 + Agny 9 + 4 a2n+1_1) + 2a2n+1 =

= 2(82n + Agn 1 -+ Agn 49 + -4 a2n+1) =2 Son+1 .

Possiamo allora affermare, dal principio di induzione matematica, che la (2.8) vale per
ogni n > 1. In definitiva, dalle (2.7) e (2.8), si ha

(2.9) Sp < 0p <28m , n>1.
Se la serie Z a,, converge allora sup {s, } ¢ finito, di conseguenza ¢ finito anche? sup {son }
n>1 n>1 n>1
il quale, dalla (2.9), implica che sup{c,} ¢ finito. Pertanto anche sup{c,} ¢ finito
n>1 n>0

provando cosl la convergenza della serie E 2" asn.  Se invece la serie E a, diverge
n>0 n>1

259 >0 & una sottosuccessione di {sp }n>1.
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allora sup{s,} = +oo. Pertanto, dalla (2.9), anche sup{o,} = +oo da cui risulta
n>1 n>1

sup {0, } = +00. Percio la serie Z 2" agn diverge.

n20 n>0

Viceversa se la serie E 2" agn converge allora sup {0, } & finito, di conseguenza ¢ finito
>0
n>0 =

anche sup{o,}. Dalla (2.9) risulta finito sup {s,} provando cosi la convergenza della
n>1 n>1

serie E a,. Se invece la serie E 2" agn diverge allora sup {o,} = +oo da cui segue
n>1 n>0 n=0

che sup{o,} = +00 e, per la (2.9), & sup{ssn} = +00. Se in tal caso la serie Zan

n>1 n>1 n>1

convergesse, allora sup {s,} sarebbe finito per cui sarebbe finito anche sup {sgn}. Poiché
n>1 n>1

questo e falso, risulta che la serie Z a, diverge. |
n>1
Esercizio 2.51. Per p,q > 0 si consideri la serie
oo

> g
< nrlog’n '

Provare che

se p=1 allora la serie converge per ¢ > 1 e diverge per 0 < q <1,
se 0 < p <1 allora la serie diverge,
se p > 1 allora la serie converge.

B Soluzione. Per p =1 la serie e
>
—n log?n
e, dalla Proposizione dell’Esercizio 2.50, essa ha lo stesso carattere della serie

o0 o0

1 1 = 1 1 1
e~ 2"log?2" (log 2m) nilog?2  log?2 4= n1

n=2 n=2
la quale converge per ¢ > 1 e diverge per 0 < g < 1.

PerO<p<lel—p>0percui

. log?n
lim

n—oo MI—P

=0.

log?n
nl-r

_ log'n

Percio per ogni € > 0 esiste n. € N tale che per n > n. si abbia Ty
-

< €.

Scelto allora € = 1, esiste n; € N tale che, per n > nq, si abbia
log?n < n'™?

da cui
1 - 1 1 S
=— er n>mny.
nPlogin =~ nPnl—r n P =
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o)

Dal criterio del confronto segue che la serie Z

n=2

1

loain diverge per 0 < p < 1 per ogni
gin

q > 0.

Per p > 1, poiché logn > log 2, per ogni ¢ > 0 si ha
1 1 1
nPlog?n ~— log?2 np

o . 1 . e
e poiché in tal caso la serie g — converge, si conclude che la serie g
npkP
n>1 n=2
per p > 1 per ogni g > 0. |

———— converge
nPlog?n
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3. ESERCIZI SUI LIMITI DI UNA FUNZIONE DI UNA VARIABILE REALE

Esercizio 3.1. Calcolare i sequenti limiti:

(1) lim

, (2) limxtanx .
T3

1
B Soluzione di (1). Cambiando variabile e ponendo y = — & y — 0%, dunque
x

22 1 1
T = lim — — =400

lim 5
S0+ cos
cos— Y Yy Yy

T—r+00

Soluzione di (2). Qui dobbiamo distinguere i due limiti laterali

lim ztanz e lim ztanzx
=5 x—>%+

avendo quindi

. ™ . . .
lim x=—= , lim tanz =400 dacui Ilim ztanz = +o0,
=5 2 T35 =5
. m . . .
lim x=— , lim tanx = —oc0 dacui lim ztanz = —oc0. [
x%%"L 2 IH%+ =5

Esercizio 3.2. Calcolare i sequenti limati:

1 logx
1) lim (logx)®? 2) 1 :
(1) lim (logz)*™ , (2) lm (x+2>

B Soluzione di (1). Si osservi che la funzione (logx)*~® ¢ definita per logz > 0, cio¢ per
x > 1. Dunque il limite proposto non ha senso.
Si osservi che invece sarebbe stata diversa la situazione di

lim |logz[*~ = lim e@~3sllexs|
z—0t x—07t
dove lim (z — 3)log|logz| = —3 lim log|logz| = —co da cui
z—0t z—0t

lim |logz|® = lim e ¥lelloesl — Jiy ¥ =0 .
z—0t z—0t Yy——00

logx
Soluzione di (2). Si noti dapprima che la funzione (—) ¢ definita per x > 0,
x

+ 2
inoltre
1 log x
— e(logx)-log(z+2)_1 — ef(logx)[log(erQ)]
x4+ 2

dove

lim (logz)[log(x 4 2)] = —oc .

z—0t
Pertanto

1 logx
lim ( ) — lim e Uog®)llog(@+2)] _ |jpy o7V = 10 . [ |

=0T \x + 2 z—0+ y——00
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Esercizio 3.3. Calcolare i sequenti limiti:

(1) lim log, (e—w+1) . (2) lim {m S } .

T—+400 2 T2 x—2

B Soluzione di (1). Poiché

Y

1 4 L

1 . ) ogle 5

og, | e - =
8z 2 log

e lim e *=0,siha

Tr—400
. A AN 1\ 1
Hmlog < + 5) = Jimy log (y + 5) =logg

mentre

lim logx = 400 .
T—+00

Allora )
1 1 r 42

lim log, (ez + —) = lim M =0.

z—>—400 2 T—3+00 log T

Soluzione di (2). La funzione f(x) = v/z? — 3z + 2 & definita per 2 — 3z + 2 > 0 ciog

per x € (—o0,1] U [2,+00); la funzione g(z) = ° ) ¢ definita per = # 2. Pertanto il
limite proposto e in realta
lim {\/:ﬁ —Br+2- ——
z—2+ r—2
Si ha che lim+ Va2 — 3z 4+ 2 = 0 mentre, essendo x — 2 > 0, &
T—2
_ x
lim = +400.
z—2+ & — 2
Pertanto

lim l\/x2—3x+2— v }:—oo. [ |

z—2t Tr— 2

Esercizio 3.4. Calcolare ¢ limiti

(1) Gim —BC=T) g,

=1+ —log(z — 1)

B Soluzione di (1).

. log(2 —x) . log(2 —x)
lim ———— = — lim ——=
=1+ —log(z — 1) e—1+ log(z — 1)
dove
lim log(2 —z) =logl = lim 1 —1)=—
lim log(2 —x) =logl =0 , lim log(z —1) = —oo
per cui
. log(2 — x) . 1
lim ————— = —1 log2—2z) - ——— = ) =0.
o1t — log(z — 1) ! ( 082~ ) log(z — 1)) 0



Esercizi sui limiti di una funzione di una variabile reale 47

Soluzione di (2). Cambiando variabile e ponendo y =2 —xz ¢y — 07 per z — 27 e
quindi
2—x Y
lim — :hme—:—{—oo. |
2= 2 — X  y—=0t y

Esercizio 3.5. Calcolare i limiti:

i log? = . 4log 2z
, .
(1) lim z (2) lim z
z—0t T—+00

B Soluzione di (1).

. 2 . 2 . 3
lim 298" % = lim e(log" ®(0g2) — iy elog”=

z—0t z—0t z—0t
dove lim log®z = —oco. Allora
z—0t
. 3 .
lim €% = lim e’ =0,
z—0t Yy——oo
quindi
. 2
lim z'°¢°% =0 .
z—0t
Soluzione di (2).
lim x410g21 — lim e4(10g 2z)(log x)
T—+400 T—+400
dove lim (log2x)(logx) = +o0o, quindi
T—+00
lim e*(os20)(og®) — iy W = 40
T—r+00 Yy——+00
da cui
lim z4°82* — 4o . [ |
T—>-+00

Esercizio 3.6. Calcolare i sequenti limiti:

1 1
Wt g ()

B Soluzione di (1). Si osservi che

) 1
lim — =0
z——oco sinh x
quindi
im arctan — = lim arctan y =
| arcta lim arcta 0
T——00 sinhx  y—0
da cul
lim e sz = lim Y = lime” = 1
T——00 y—0 z—0
mentre
. 1
lim =0
z——oo cosh x
Allora )
1
lim ——— ™ =0-1=0.

z——oo cosh z
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Soluzione di (2).

. 1 1 V2
lim = = —.
VR S IV s

Esercizio 3.7. Calcolare i sequenti limati:

473 + 502 + 22 — 1 341
(1) lim -2 20 20 o (2) lim T

T—00 212 25 00 x —1

B Soluzione di (1). Poiché lim (42 + 52% + 22 — 1) = 0o ed & un infinito del terzo ordine,
T—00

lim 22% = oo ed & un infinito del primo ordine, si ha che

T—r00
. A+ 52t + 20— 1
lim =0
T—00 212
Soluzione di (2). Poiché lim (2° 4+ 1) = —oo ed & un infinito del terzo ordine,
T——00
lim (x — 1) = —oo ed ¢ un infinito del primo ordine, si ha che
T——00
3
1
lim S = oo m
z——o00 T — 1
Esercizio 3.8. Calcolare i sequenti limiti:
V/ ) 1—
(1) lim Y2 T (2) i LV

T—2 N — 2 ’ z—1 (q; — 1)2
B Soluzione di (1). Il limite ha senso per x — 27, inoltre si presenta nella forma

w-»

. Razionalizzando sia il numeratore che il denominatore si ha

VvV + —\/ﬁz (2—2)vVr -2 Ve —2

Vi —2 (z —2)(Va + 2+ V2x) Vrt2+42

indeterminata

e quindi

lim VT +2—V2zx B . VI — 2

— lim =0
z—2+ vV —2 e=2t Jr + 2+ V21
Soluzione di (2). Poiché limz +1 - V=1, liml(:v —1)*>=0 (con (z —1)2 > 0) si ha
T— T—
che

i EFL=VE -
z—1 (q} — 1)2

Esercizio 3.9. Calcolare i limaiti:

. z+x . 1\"
1) Jm = o ) im (”5) ‘
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W Soluzione di (1). Poiché lim z + /& = +oo ed ¢ un infinito del primo ordine,
Tr—r—+00

1
lim 2/ = +oo ed & un infinito di ordine 3 si ha

T—+00
lim & +Vx _

T—-+00 2\/5

+00

Soluzione di (2).
1 X
lim (1 + —) = lim ezlog(pr%)
z—0t T z—0*

dove

1
log(1+—)
1 log(1
lim xlog(l—l——): lim ———%7 — Jim M:O

x z—0t 1 y—+00 Yy

z—0t

x
perché il numeratore € un infinito di ordine 0 < & < 1 (si noti anche che per y — 400 ¢
log(1+ y)

> 0); quindi
Y
: 1\* .
lim (1—}——) = lim e*=1. |
z—07t X z—0F
Esercizio 3.10. Calcolare i limiti:
22 —x+1 xt +4
1) 1l _ 2) i .
O Jfm ——— o @l
B Soluzione di (1). Si ha che lirf (#* — 2 + 1) = +4oo, infinito del secondo ordine,
T—r+00
lir}rl x = 400, infinito del primo ordine, quindi
T—r—+00
2
.ot —x+1
lim —— = +00.
T——400 €T

Soluzione di (2). Si ha che lim (z* +4) = 400, infinito di ordine 4, lim (2* — 1) =
T——00

T—r—00
~+o00, infinito del secondo ordine, quindi

Esercizio 3.11. Calcolare i sequenti limiti:

. x2—\/§x+1 . vr—1
(1) lim . (2)  lim — = -
w1 /222 + 5z — (V5 + /2) e—too —12+2x —5

B Soluzione di (1). Si ha che liml(xQ—\/gx+1) =23, lin%[\/ix2+\/ga:—(\/g+\/§)] =
r—r r—r
0 quindi

. 2 —V3r+1
lim =00

21222 + /52 — (V5 + V2)
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1
Soluzione di (2). Si ha che lir}rq V& — 1 = 400, infinito di ordine 3 lim (—2°+4 27—
T—r+00

T—r+00
5) = —o0, infinito del secondo ordine, quindi

Vr—1

m o r
z—+o0 —x2 + 20 — 5

Esercizio 3.12. Calcolare i limiti:

V1 — a2 4 — z?
1) lim-— , (2) lim —F——
z—=1 1 — 3 =2 3 — £/br —

0
B Soluzione di (1). Il limite si presenta nella forma indeterminata “6”, tuttavia
Vi—-z2  Jl—azvyl+z  Vi+z
V1—23 Y1—avVl+z+22 Ve2+z+1
V1 — 22 . v1+zx 42

Iim —m——— =1lim —— = {/ = .

z—1 \3/1_1'3 z—1 \3/3:'24_;5_‘_1 3

Pertanto

w»

Soluzione di (2). 11 limite si presenta nella forma indeterminata . Razionalizzando

il denominatore si ha
4 — x? 2—2)2+2)3++vbx—1) 1
_ 29 346z —1).
3_ Bz 1 90— (52— 1) 5 2+ 2)@E+vor—1)
4 — 22 1

Allora

Esercizio 3.13. Calcolare i sequenti limati:

(1) lim &2 (2) lim (sinz)®"
z—0t

B Soluzione di (1). Il limite dato ¢ ricondotto al calcolo del limite
lim 3y? -2y — T
y—+oo 5y + 6y + 5
dove ygm (3y? — 2y — 7) = +o0, infinito del secondo ordine, lim (5y + 6y +5) = +o0,

y—+
infinito anch’esso del secondo ordine. Quindi

3 2

=, 3
lim:% 365 ==
r—>0+_+_+5 5
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Soluzione di (2).

tan x tanz logsinz

lim (sin x) = lim e
z—07F z—07F
dove

1 log si
lim (tanz)logsinz = lim ST CBSIMT

z—0t y—0t CcCoS T
: 1 L : : 1 .
= lim lim sinx logsinz | = ( lim lim ylogy | =
z—0+ COS T z—0+ =0t COS X y—0+
logy

= i 1 = li =0
Jim, ylogy = lim, =7
Y

perché al numeratore si ha un infinito di ordine 0 < k£ < 1 e al denominatore si ha un
infinito del primo ordine. Quindi

lim (tanz)logsinz =0

z—07F
con (tanz)logsinz < 0. Allora
lim (sinz)™® = lim e™n®18sine — Jimy ¥ =1 .
z—0t z—0t y—0—
|
Esercizio 3.14. Calcolare 1 limiti
. : 1/z4 . sindz
1) lim (1+sin’x , (2) lim — .
(1) z—0+ ( ) (2) z—0 sin 2z

B Soluzione di (1).

CU4 . .
lim (1 —+ Sin2 x)l/ = lim 6(1/$4)10g(1+sm2 x)

z—0t z—0+
dove
. log(1 +sin®*z) . log(1 +sin*z) sin’x
lim = lim —5
0+ x4 z—0+ sin® x x4
e
log(1 + sin? log(1
liy 8 Es D) los(ry)
z—0+ sin® x y—0+ Y
. sinzx . sinz 1 . 1
lim = lim — = lim — = +o00,
=0+ T z—0+  x2 1?2 g0+ 2
quindi
log(1 + sin?
lim og( —|—4sm ) o
z—0t T
Allora A
lim (1 + sin? x)l/x = lim &Y =+00.
z—0+ Yy—+o00
Soluzione di (2).
. sin3x 3 .. sindx 2x
lim — = — lim -
z—0 sin 2x 2 zto0 3x sin2x
dove 3 5
lim o g i 2 =

z—0 3z z—0 SIn 2z
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quindi
. sin3z 3
lim — = -
z—0 8in 2z 2

Un altro modo per risolvere il limite proposto ¢ notare che la funzione sinax ¢ un

infinitesimo per x — 0 del I ordine e precisamente si comporta come la funzione ax. Si
puo scrivere allora che

. sin3z . 3r 3
lim — = lim— = —.
z=0sin2x =—02x 2
[ |
Esercizio 3.15. Calcolare i sequenti limiti
(1) lim T —sinx ’ (2) . 3z —tanx

1m . 2 -
z—0 €T z—0 slnx + tan“ x

B Soluzione di (1). 11 calcolo diretto e

hmfiﬂﬂf_mnofﬁmm>_1—1_o.
x—0 €x

z—0 x

Soluzione di (2). Sappiamo che la funzione f(z) = tanz per  — 0 ¢ un infinitesimo
del T ordine e si comporta come la funzione x. Stessa cosa per la funzione sinz. Allora

3r —tanx . 3r—=x . 2

m———— = lim 5 m
z=0sinx +tan“xr =0z +x z—0 1+

[ |
Esercizio 3.16. Calcolare 1 sequenti limiti
1 — cos® VI
(1) lim— =% (2) lim Y- PT
z—0 T SINT COS T z—0+ x
B Soluzione di (1). Si ha
. l—cos’z . (1 —cosz)(1+ cosx+ cos® z)
lim ————— = lim : —
=0 rsinx cosx -0 rsinz cosw
. l—cosz x? . l4cosx+cos’z 1 3
=lim —— - lim — - lim =—-.1-3=-.
z—0 T z=0 rsinx z—0 CosS & 2 2
Soluzione di (2). Si ha
. V1—cosx . 1 —rcosx V2
llim —————— = lim 4/ ——— = — .
z—0t xT z—0t 2 2
[ |
Esercizio 3.17. Calcolare i limits
(1) lim sinz + cosx — 1 (@ Im (1 —sinx)?
z—0 €T =

a—T  COST
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B Soluzione di (1). Poiché la funzione f(xz) = 1 — cosz ¢ un infinitesimo del II ordine
perz — 0, ¢

1 —cosz
lm — =0
x—0 x
da cuil
. sinzx +cosx —1 . sinz 1 —cosz
lim = lim —1
z—0 T z—0 X z—0 €T

Soluzione di (2). Posto y = = —g ey — 0 per x — g, inoltre sinx = cosy,
cosx = —siny. Pertanto

. l—sinzx . 1 —cosy
lim ——— = —lim ——=

z—=Z  COST y—=0 siny

dove le funzioni f(y) = 1—cosy e f(y) = siny sono infinitesime per y — 0 rispettivamente
del IT e del T ordine. Quindi

1 —sinzx

lim —— =0.
eI COST
[ |
Esercizio 3.18. Calcolare
COSX — COSa
1) lim — 2) lim (logz — logsinx) .
(1) 1 CEZEEE ) i (logz ~ logsine)
B Soluzione di (1). Usando le formule di prostaferesi® e ponendo y = x — a si ha
sin 4
— 9 2
limw:—2hm 2olimsiny—k CL:—sina.
T—a T —a y—=0 y—0 2
Soluzione di (2). Abbiamo
lim (1 — log si = lim 1
Jm Qg — logsina) =l log
e postoy = —— ¢y — 11 per x — 0", dunque
sinx
. X .
lim log — = lim logy =0.
a—0t o sinx g1t
[ |

Esercizio 3.19. Calcolare

y
(1) lim — 2%

—— = , (2) lim(tanz)(l —sinx).
T3 <I . E) T3
2
3 cosx — cosa = —QSinx_a sinx+a

2
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B Soluzione di (1). Posto y = x — g, il limite proposto e ricondotto al calcolo di

. 1 —sinx 1—cosy 1
lim ——— = lim ———— = .
7z ( 7T> y—0 Y 2
'I‘ _——
2
™
Soluzione di (2). 1l limite si presenta nella forma indeterminata “co-0”. Posto y = T—5
e sinx = cosy, cosx = — siny quindi
1 —cosy
lim (tanz)(1 —sinx) = — lim(cot y)(1 — cosy) = — lim cosy - lim ———=
Jim (tanr)(1 = sin) = — limcor )(1 — cosy) = — limcosy - imy =

dove le funzioni f(y) = 1—cosy e f(y) = siny sono infinitesime per y — 0 rispettivamente
del IT e del T ordine. Di conseguenza

1—(:osy_O

lim y
y—0 sIny

da cul

lim (tanz)(1 —sinx) = 0.
TG

Esercizio 3.20. Calcolare

i 3 2
(1) fim SEINT gy gy, 3VER2
g—+o00 20 — SIn T z—=+oo \/x — 1
B Soluzione di (1). Si ha
. T +sinz o 14osns
lim —— = lim ——%

sinz

z—+00 2 — SIN T  w—+oo 2 —

dove

. sinx
lim =0.
r—+00 U

Infatti pur non esistendo il lim sinz, ¢ |sinz| < 1 per ogni z € R, dunque per ogni

Tr—+00
e > 0siha (z>0)
sin x 1
< —=><e¢
per x > —; questo prova che
€
. sin x
lim =0.

r——+o00

Ne segue, dunque, che

. T +sinx 1
lim —m— = — .
T—+00 20 — SIN T 2
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Soluzione di (2). Abbiamo
x (— + 2) ; +2
lim 3\/5——1-%_ lim VT = lim VT 1 = Too.

T—r+00 r—1  aoteo 1 T—+00
- L - —

Esercizio 3.21. Calcolare, usando i teoremi di de I’Hopital, i sequenti limiti:

. 2 .
1) i VIR g gy, Sl
z—0T tanx z——1- /a2 —1

w_»

B Soluzione di (1). Il limite si presenta nella forma indeterminata . Applicando il

teorema di de I’'Hopital si ha

L 1
: 2 —T cos /T + 2x
i SRVEADT 2 :
=0+ tan x z—0+ 14 tan“x
dove
lim 7% cos/z = lim cos /@ = 400,
z—0t x—0t \/5
lim 2e =0 , lim(l1+4tanz)=1
z—0t z—0t
ed allora

: 2
. sm+/xr+x
iy SV 2
z—0+t tanx

= 400 .

0
Soluzione di (2). Il limite si presenta nella forma indeterminata “=”. Posto y =z + 1

0
per x — —17 ¢ y — 07, inoltre sinTz = sinw(y — 1) = sin(ry — 7) = —sinny, 22 — 1 =

(y —1)* =1 = y(y — 2), dunque siamo ricondotti al calcolo di
~lim sin Ty
y=0- [y(y — 2)]'/3
che, applicando il teorema di de I’'Hopital, da
A 3 gy Loyl 2)*°]
T Slyly - 202y - 2) Y Y

3

=0.

Esercizio 3.22. Calcolare, usando i teoremi di de I’Hopital, i sequenti limiti:

(1) 1 sinx 4+ cos 2x 2) 1 sinyz — 1
im im ——— .
e—2 1 +sin®2x + cos2z 21t og gm
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B Soluzione di (1). Posto y = x — g e sinx = cosy, cos2x = — cos 2y, sin 2z = — sin 2y,
quindi siamo ricondotti a calcolare?
cos Yy — cos 2y ) —siny + 2sin 2y
11m ) = g im . . ==
y—=0 1+ sin“ 2y — cos2y H =~ y—04sin2y cos2y + 2sin 2y
—siny + 2sin 2y 1 .. —cosy+4cos2y 1 1 1
= 111m — — — R
y—=0 2sindy + 2sin2y H 2

im =—.—=—.
y—04cosdy +2cos2y 2 2 4

Soluzione di (2). Posto y = x — 1 siamo ricondotti al calcolo di

sin sin 1 cOS —1/2
lim vy = — lim _ﬂ\/@ lim % =

7
y=0" cos (g(y + 1)) v=0" gin 5 H 2 y-0t 5 CoS5Y
1 cos
= —— lim \/g = —0.
T y—0t y cos (5 y>
]
Esercizio 3.23. Cualcolare, usando i teoremi di de I’Hopital, i limaiti
(1) lim (logxz —logsin2x) , (2) lim(tanz)(l —sinz) .
z—0t T3
B Soluzione di (1). Si ha
lim (1 —logsin2x) = lim 1
i, (ogs —logsiu22) = iy log o
dove
) x
lim —
z—0+ sin 2z
0
si presenta nella forma indeterminata “6”. Usando il teorema di de I’'Hopital si ha
: 1 1
lim — = lim = — .
t—0+ sin2x H z—0+ 2cos2x 2
Quindi posto y = — Y abbiamo
sin 2z
. x . 1
lim log — = lim logy =log—- = —log2 .
z—0+ sin2r 1+ 2
2
Soluzione di (2). Posto z — g =y si ha sinx = cosy, cosx = —siny, quindi
1—
lim (tanz)(1 — sinz) = — lim cos y( , cos ) =
=% y—0 siny H
(1 4 s
— fim siny(1 + siny) _g
H y—0 cos Yy

4“;” e 'uguaglianza che si ottiene usando il teorema di de ’'Hopital.
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Esercizio 3.24. Calcolare, usando i teorem

(1)

T
lim 5z tan —

xr——+00 T ’

B Soluzione di (1). Posto y = z, il limite &
T

tany

Yy

= b 1
H

5 lim
y—07+

57
1 di de I’Hopital, 1 limiti
arctan?(z — 1)

(1—xz)?

1m
z—1

(2)

ricondotto a

im (1+ tan®y) = 57 .

y—07+

Soluzione di (2). Posto y = x — 1, siamo ricondotti a

1m
y—0

che si presenta nella forma indeterminata

si ha
arctany

arctan? y
_ = = lim—
# y=0y(1+ y?)

lim
y—0 y2

“_

arctan®y

y2

7

. Allora usando il teorema di de I’'Hopital

1
= [1m
" y=0 (14 y2)(1 + 3y?)

Esercizio 3.25. Calcolare, usando i teoremi di de [’Hopital, i limiti

(1) sin® 2x 2)

m ——
z—0 4 arctan x

B Soluzione di (1). Il limite si presenta ne

teorema di de I’Hopital si ha

sin® 2x

11m

lim =z

T—>+00

-
— — arctanx .
2

44977

lla forma indeterminata 0 Applicando il

6 sin® 2z cos 2x

im —— 5
z—0 x2 arctanx H z—0 x
2z arctanx +
1+ 2?2
. (1 + 2% sin® 2z cos2x . sin2z (1 + 2?)sin 4z
=6 lim =3 lim . =
2—0 22(1 + x2) arctan x + 22 =0 1 2(1 + 2?)arctanx + x

1 2)sin4
6 lim (14 2°)sindx
z—0 2(1 —i—$2)

arctanx +x H  z—0

4—8
5 =8

2rsindx + 4(1 4 ) cosdx

G-
dr arctanz +2 +1

Soluzione di (2). 1l limite si presenta nella forma indeterminata “co - 0”7, ma posto

= ——, si ha
V="

T 1

— — arctan —
lim +/z (E — arctan x> = lim ¥ =
T—+00 2 y—0+ Y H

1 -2 2 1
— lim | - ) =2 tim L = =

H yo0+ 1 Y3 y—ot y2 4+ 1 3
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=2 lim = 400
=0t y(y? +1)
[ |
Esercizio 3.26. Usando i teoremi di de I’Hopital, determinare i limiti
(1) lim 2? — arctan x? @) 1 sin 3x

T im — :
=0 (1 —cosx) 20 sin 2x

0
B Soluzione di (1). Il limite si presenta nella forma indeterminata “6”. Applicando il
teorema di de I’Hopital, si ha

2
. z% — arctan 2? , 20—

lim o~ = lim e
250 (1 —cosz)® H 2—03(1 —cosz)3sinx

.T5

2
3 250 sinz(1 — cosz)?(1 + z4)

2/, , x? , 1
= - (hm - ) lm ——— lim =
3 \e=0sinz/ \2=0 (1 —cosz)? ) \a—01+ 24

2
2 (Y 22,8
3 z=0\1—cosx 3 3

Soluzione di (2). Dovendo usare i teoremi di de 'Hopital per questa forma indetermi-

nata “6” (che tuttavia potrebbe essere facilmente risolta con banali passaggi algebrici e

sin x
tenendo conto del limite notevole lin%) ——), si ha
T— X

sin 3z . 3cos3x 3
im — = lim —.
z—08in 2z H z—0 2 cos 2x 2

Esercizio 3.27. Usando i teoremi di de I’Hopital, risolvere le forme indeterminate dei
sequents limati

(1) lim , (2) lim

z—0 T z—0+

sinz + cosx — 1 < 1 1)

sinx =z

B Soluzione di (1). Dovendo usare i teoremi di de I'Hopital per questa forma indeter-
minata “=" (che tuttavia potrebbe essere facilmente risolta considerandone 1'ordine degli
infinitesimi), si ha

sinx +cosx — 1

lim = lim(cosx —sinx) = 1.
z—0 T H z—0

Soluzione di (2). Abbiamo

. 1 1 . x—sinx . 1 ——cosz
lim —— = lim —— lim —mM8M

z—0T \sinx & z—0t xsinx H z—0tsinx +xcosx H
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sin x

=0.

= lim -
H z—0+ 2cosx — xsinx

Esercizio 3.28. Risolvere le forme indeterminate dei sequenti limiti usando 1 teoremi di
de I’Hopital:
1 — cos — arcta
(1) lim——"  (2) lim AT
z—0 T — sinx z—0 arcsinx — x

0
B Soluzione di (1). Questa forma indeterminata “6” risolta con il teorema di de I'Hopital
da

. 1—coszx . sin . COSX
Im ——— = lim ——— = lim —
z=0x —sinx H z—01 —cosx H z—0sing

= 0.

Soluzione di (2). Usando il teorema di de I’'Hopital per questa forma indeterminata

“won

. si ottiene

1 1
. T —arctanx . 1+ 22
lm—"-—— =lim—>—"+— =
z—0 arcsinx — x H z—0 1

1
V1—2?
. $2\/1—IE2 . g;z . 1 — 12
=1 = hH(l)l— -
z— —

m lim
=0 (14 22)(1 — V1 — 22) V1 — 22 a—0 14 22

x? 2

=lim —F+—— = —lim =2 lmvV1—22=2.
x—>01_\/1_x2 H x—0 1(1—$2)_1/2(—2$) z—0
2

Esercizio 3.29. Risolvere le forme indeterminate dei limiti sequenti usando i teorems di
de I’Hopital:
e

1) im = =2 (9) lim (cot%c—i>.

=0 x —sinx 0+ 2

B Soluzione di (1). Applicando il teorema di de 'Hopital a questa forma indeterminata

“—” ¢i ottiene
e —et =22 e te =2 .ot —e’ " . T+ e ”
im——  —=lim———=lm———— =lim—— =2
=0 x —sinx H z—0 1—cosz H z—0 sinx H z—0 coSZx

Soluzione di (2). 1l limite si presenta nella forma indeterminata “co — co”. Tuttavia

_ ) 1 , cosz 1 . 2%cos’x —sin’x
lim ( cot r—— )= lim —— — 5 | = lim — =
z—0+ T a—0+ \ sin“x 0+ x2sin® x

, (x cosx —sinx)(z cosz + sin x)
= lim =
20+ r2sin’ z

. x cosx —sInx . xcosx+sinx
= ( lim o lim - =
z—0+ r?sinx z—0+ sin x
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. xcosx—sinx . T Ccosxk
= ( lim P lim — + 1| =
z—0+ z2sinx z—0+ Sinz

T CcoST —sinx

=2 lim e
z—0+ r?sinw

. . . . 0 . .
e quest’ultimo si presenta nella forma indeterminata “6”. Usando allora il teorema di de

I’Hopital si ottiene

. T cosx—sinx . T sinx
lim P = — lim - 5 =
z—0+ T?sinx H -0+ 2x sinx + x4 cosx
i rsinz
= — 1m g
T COSZ
+ .
=0 a:sm:zc<2—|— - >
sinx
. 1 1
=— lim ———ere = —— .
3H0+2+x COS T 3

sinx

: 9 1 2
lim (cot?z — — | = —=.
0+ 2 3

Quindi

[ |
Esercizio 3.30. Calcolare i sequenti limiti usando @ teoremi di de [’Hopital:
2
1-— ro_ cos T - 9
(1) lim 2 7 . (2) lim {tan2x - (— - :13) ] :
z—0 T oI 2

B Soluzione di (1). Applicando il teorema di de I'Hopital a questa forma indeterminata

“_77 Si ha
22
) 1 -7 —cosz . —T+sinx . —l4cosx 1
lim = lim ——— =lm—5F+—=——.
a—0+ xt H z—0+t 423 H z—0 1222 24
Soluzione di (2). Posto y =z — g si ha sinx = cosy, cosx = —siny, allora
1 1
lim |tan®z — ——— | = lim cot? y — —
v=5 " (f _ x) y—0F y
2

che ¢ lo stesso del (2) dell’Esercizio 3.29.
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4. ESERCIZI SULLO STUDIO DEL GRAFICO DI UNA FUNZIONE DI UNA VARIABILE REALE

Esercizio 4.1. Studiare il grafico delle sequenti funzioni

x? _ 14a8s

filx) = ; f2($)_1_—m3/5'

2 —1

B Studio di fi(z).

(A) Dominio della funzione
Il dominio della funzione e

D(fi)={r€R:2>-1#0} =R\{-1,1} = (o0, —1) U (=1,1) U (1, +00) .

(B) Comportamento agli estremi degli intervalli che compongono il dominio

. z? . z? . z?

lim — =1 , lim — =400 , im — = —0
z——oco % — 1 z—=—1— 2% — 1 z—=—1+ 22 — 1

: z? : s . z?

lim —o0 , lim =400 , lim =1.

esl- a2 —1 a—1t 12 — 1 ootoo 22 —1
La retta di equazione y = 1 € un asintoto orizzontale per x — +o00, mentre le rette di

equazione x = —1 e x = 1 sono asintoti verticali.
(C) Ricerca dei punti di estremo e monotonia della funzione

I punti da determinare sono da ricercare tra i punti dell’insieme

{z €D(f): fi(x) =0} .
Essendo D(f;) un aperto e f; derivabile con
filz) = —22(2* = 1)~

si ha
{zr € D(f1) : fi(z) =0} ={x € D(fi) : 20 = 0} = {0} .

Sia 1(0,7) C D(f1) un intorno di 0; se z € I(0,r), x < 0, ovvero —r < z < 0, allora
2¢ < 0 e quindi f{(z) > 0 da cui f; ¢ strettamente crescente nell'intorno sinistro di
0; se invece z € I1(0,7), x > 0, ovvero 0 < = < r, allora 2z > 0 e f{(z) < 0 da cui
f1 e strettamente decrescente nell’intorno destro di 0. Il punto 0 & pertanto un punto
di massimo locale per f; che tra l’altro risulta esserne l'unico punto di estremo locale.
Dall’espressione di fi(z) si noti che per x € D(f1), x < 0, ¢ fi{(z) > 0 ovvero f; &
strettamente crescente in (—oo, —1)U(—1, 0], mentre, in modo analogo, f; € strettamente
decrescente in [0,1) U (1, +00).

(D) Ricerca dei punti di flesso e concavita e/o convessita della funzione

I punti di flesso della funzione sono da ricercare tra i punti dell’insieme

{x € D(f): fl(x) =0} .
Poiché®
M) =202 — 1) P32 + 1),

5 f1 & derivabile due volte.
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non ci sono punti di flesso ed essendo 3z? + 1 > 0 per ogni z € R, si ha che f] < 0 per
(22 —1)% < 0 ovvero per 2> —1 < 0, i.e. per x € (—1,1); mentre & f{’ > 0 per (z2—1)> > 0
ovvero per 2 —1 > 0, i.e. per x € (=00, —1) U (1, 400). Quindi f; & concava in (—1,1)
ed ¢ convessa in (—oo, —1) U (1, +00).

Studio di fo(x).
(A) Dominio della funzione
D(fy) ={zcR:1-2*"#40}={zcR: 2% 41} ={zeR:z#1}
dunque
D(f2) = R\{1} = (=00, 1) U (1, +00)

che € un insieme aperto.

(B) Comportamento agli estremi degli intervalli che compongono il dominio

i 14 23/5 " 14 23/5

e S e
1 +x3/5 1 _|_l.3/5

lim ———=-00 , lim ———=-1.

a1t 1 — 23/5 z—+oo 1 — 3/5

La retta y = —1 ¢ un asintoto orizzontale per x — 400 mentre la retta x = 1 ¢ un
asintoto verticale.

(C) Ricerca dei punti di estremo e monotonia della funzione
I punti di estremo locale sono da ricercare in
{zr € D(f2) : fo(x) =0}

Poiché 6

folw) = za7P(1 =272 per w0
la funzione ¢ priva di estremi locali in D(f2)\{0}. Inoltre in tale insieme f5(z) > 0 per
cui la funzione in D(f2)\{0} ¢ strettamente crescente. In 0 si ha

20— x a—s0- 2 |1 — a3/
23/ 1 foz) = f2(0)
=2 lim ————=2lim - = = lim ———"——
o0~ z(1 — x3/%) om0~ x2/5(1 — 23/%) oo = I x

che prova che 0 ¢ un punto di cuspide. Siccome f»(0) = 1, se z appartiene ad un intorno
sinistro di 0 allora 2%° < 0, quindi 1 + 2%° < 1 — 2%/5 con 1 — 2%/° > 0, dunque in un
intorno sinistro di 0 si ha

£3/5
fg(I) = % <1= f2(0) .

In un intorno destro di 0 si ha 2%° > 0, quindi 1 4+ 2%/° > 1 — 2%/®; possiamo supporre
che sia 0 < 2 < 1 cosicché in un intorno di 0 abbastanza piccolo sia 1 — 2%/®> > 0. Allora
in un intorno destro di 0 e

23/5
folr) = T > 1= (0).

Le due disuguaglianze provano che 0 non ¢ un punto di estremo locale.
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(D) Ricerca dei punti di flesso e concavita e/o convessita della funzione

I punti di flesso sono da cercare tra i punti dell’insieme

{r €D(fo): fi(x) =0}.

Poiché
1) = 52 o P — 29 P4~ 1)
i punti di flesso sono tra i punti di D(fy) per cui
42%° —1=0.

Si ha che x = 473 € D(f,) & 'unico punto di flesso.

1
Infatti se 0 < 2 < 4753 allora 775 > 0, 2%/° < 1 <1lcheda1—2%5>0,42%°—1<0,
di conseguenza fy(x) < 0 che implica f,(z) concava in (0,473,
Se 4753 < x < 1 allora 7 7/° > 0, 1 <23 <1chedal—2a%% >0, 4235 —1 >0, di
conseguenza fy(x) > 0 che implica fo(x) convessa in [47°/3,0).
Inoltre per < 0 si ha 277/° < 0, 1 — 235 > 0, 42%/° — 1 < 0, di conseguenza f¥(x) > 0
che implica fy(x) convessa in (—o0,0).
Infine per z > 1 e o7 /° >0, 1 —2%° < 0, 423> — 1 > 0, di conseguenza f5(z) < 0 che
implica fy(x) concava in (1, 400).

Esercizio 4.2. Studiare il grafico delle funzion:
fa(x) = eV2zt3 | fi(z) = 6xlogz — (3z — 2)[log(3z — 2) + 1] — 4log 2 .

Esercizio 4.3. Studiare il grafico di

1+4sinz

f5(l’) — ]_ — X + (12/3 — ]_) :L'2/3 —|— 1 s fG(x) frnd ]_ — @ —ltsinz |

B Studio di f5(x).

(A) Dominio della funzione
D(fs) =R
(B) Comportamento della funzione agli estremi del dominio

Si considerino le funzioni

fla)y=2"% | gly) =1-y"+ @ - DVy2 +1

cosicché
fs(x) = (g0 f)(x) .
Allora
lim f5(z) = lim (go f)(z) , lim f5(z)= lim (go f)(z)

T—r—00 T—r—00 T—>+00 T—+00
dove

lim f(z)= lim 2/*=—0c0 , lim f(z)= lim 23 = 400

T——00 T——00 r——+00 T—-+00
per cui

lim f5(z) = lim g(y) , lim f5(z) = lim g(y).

T——00 Y——00 T—+00 Yy——+o0
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Si ha dunque:

lim f5(z) = lim (1 — 3+ (Y — 1)@) =

T——00 y——00

1
= lim (1—y3+(y2—1)|y| 1+E>:

Yy—>—00

1
_ygr_noo <1 Yo —yly” — 1) /1 + y2>
: 3 1 1
= lim 11—y |1+4/1+—= | +y\/1+—5p =400
Yy——00 Y Y

di ordine 3 rispetto a y = z'/3 ovvero di ordine 1 rispetto a z: vi potrebbe quindi essere
un asintototo obliquo per x — —oo. Si ha:

lim f5(x): lim M: lim @_

T——00 x T——00 x Y——00 y3
_ lim L=y’ + (" - Dyy?+1
- y——00 y3 N
o LI =DV 1y (- DV
y——00 y3 y——00 y3
1 1 1
[
Y——00 Y

e questo e il coefficiente angolare m dell’asintoto obliquo se esiste finito il
li — .
Mim (f5(2) — ma)

Si ha:
lim (f5(ac) — mx) = hm (f5( )+2x) —

T—r—00

= lim (1—x—|— 2/3 1)V 223 + +2:1:):

T—r—00

= lim (1+y3—|—(y2—1)\/y2+1)

y=x1/3 Yy——00

che si presenta nella forma indeterminata “oo — 0o”. Tale forma indeterminata e data da
Jim <y3 +(y* — 1)\/?JT+1) :
Razionalizzando si ottiene:
P el ittt o e o ) RO el e e 91 O N

eyt (P VPR v 2 1 L
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Dunque non vi e 'asintoto obliquo per x — —oo0.
Per z — 400 si ha:

lim f5(x) = lim (1 — P+ (v — 1)\/@)

T—>+00 Yy—+00

che si presenta nella forma indeterminata “oo — 0o0”. Tale forma proviene dal

lim <(y2 —DvVy? +1-— y3> .
Yy—r—+00

Razionalizzando si ottiene
-V + D -y (' =2+ D(y° + 1) —9°

im =
y—=+oo (2 — /2 + 1 3 y—+o0 1
(y ) y +1+y |y‘(y2_1> 1+E+y3
_ Yt -yt _
= 1m = —

y—too o 1 1
Y Yy

1
di ordine 1 rispetto a y ovvero di ordine 3 rispetto a x: non vi e quindi asintoto obliquo
per x — +00.

(C) Ricerca dei punti di estremo e monotonia della funzione

Si osservi che nel punto zy = 0 la funzione potrebbe non essere derivabille. Infatti:

lim fs(z) — f5(0) — lim 1—z+ (2% - 1)Va23 + 1 _
x—0 €x x—0 X
_ -y + (> -V +1
y:gl/3 yl—I>I(1) y3 N

1—32+2 2 1 1/2 2_1 2 1 -1/2
i LS @A Dyt - DA )T
H y—0 3y?

Percio l'origine ¢ un punto di cuspide.
I punti di estremo locale sono quindi da ricercare tra i punti di R\ {0} per cui fi(z) = 0.
Poiché f5 = g o f allora

f3(@) = g'(f(2))f (z)

~2/3 >0, posto y = f(z), deve essere ¢'(y) = 0. Si ha

1
e siccome f'(x) = 37

gy =y’ + 1) By" + 1= 3y(y* + 1)'/?]
da cui ¢/(y) = 0 se e solo se (per y = 0 sarebbe z = 0) 3y + 1 — 3y(y* + 1)"/2 = 0 ovvero
3y +1=3y(y* +1)Y2.
Questa equazione non ¢ mai soddisfatta per y < 0, mentre per y > 0 si ha la soluzione
. V3
Yy = 5 ovvero il punto xry = —.

Sia I(xq,7) un intorno di z1: senza perdere di generalita, si pud supporre = > 0 per ogni
x € I(x1,7) da cui segue y > 0; allora y(y? 4+ 1)~/2 > 0.
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1/3 2/3
V3 o V3 1\ 1
Se x € I(xy,7), * < x4, allora y < 9 da cui y* < 9 = |3 = -

quindi 3y% < 1. Ne segue che
By +1)2 = 9y* + 6% + 1 > 9y* + 69% + 3% = 9y* + 9% = W (> + 1)

32 +1>3yVy2+1.

Dunque per x € I(z1,7), x < z1, ¢ ¢'(y) > 0 da cui fi(z) > 0 e f; risulta essere
strettamente crescente in (z; — r,x1).

percio

V3

1/3
1
Se invece x € I(zy,7), * > x1, allora y > (?) da cui y* > 3 quindi 3y? > 1.

Procedendo come prima si avra

3y +1<3y/y2+1

ottendo cosi ¢'(y) < 0 per x € I(xy,7), + > 7 da cui fi(z) < 0 e f5 strettamente
decrescente in (1,21 + 7).

3
Pertanto z; = 5 ¢ un punto di massimo locale per la funzione f5.

(D) Ricerca dei punti di flesso e concavitda e/o convessita della funzione
Da f3(z) = ¢'(f(2))f'(x) si ha
5 () = g"(f(2) f'(2)* + ¢'(f () f" (x)

dove f'(z) = 13:_2/3 = 1]‘1(:1:)_2, f(x) = —232_5/3 = —gf(:n)_B per cui

3 3 9
1) = 5 o @)™~ 5 @) )
(o) = 5 () L @) (£ ) — 20 (F()]
Allora

5(x) = (hof)(x) per h(y)= é v~ yg" (y) — 29'(y)] -
(

I punti di flesso sono da cercare fra i punti per cui f/(x) = 0 e quindi, posto come prima
y = f(z), sono da cercare fra i punti per cui h(y) = 0, cioe tra i punti per cui

yg"(y) —2¢'(y) = 0.
Si ha: p
q"(y) = %{{y(?f + 1) 3y + 1= 3y(y* + 1)V} =
d _

= |7 (v + 1)) | [3y* + 1= 3y(y* + 1)'/?] +

+y(y® + )72 6y — 37 + DV =3y + 1)) =
= [+ 1) =P+ 1) [By + 1 - Sy(y + 1)V +

+y(y® + 1) [6y — 3(y* + D)V2 = 3y (y* + 1) =
=@+ D) (P + 11—y By + 1= 3y(y® + 1)V +
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+y(y® + 1) [6y — 3(y* + D)V = 32 (y* + 1)) =
=P+ D)3y +1-3y(y* + 1)+
+y(y® + 1) [6y = 3(y° + 1)V2 = 3% (y° + 1)1 } =
= (" + 173" + 1 = 3y(y* + ' + 6’ (4 + 1)—
=+ )73y + 1= 3y(y* + D21+ + 1)+
+6y7(y° + 1) = 3y°(y° + 1)'?} =
= (" + 1) 723" + 1 —6y(y* + )'* = 3y° (" + 1)+
+6y7(y° + 1) = 3y°(y° + 1)'?} =
= (" + 1)7°P3y" + L —6y(y* + )2 = 6y’ (" + 1)V + 67 (y" + 1)} =
= (" + )73+ 1 -6y + 1)1+ %) + 67 (0 + 1)}
quindi
9"(y) = (7 + 1) By +1—-6y(y* + 1) + 657 (" +1)] -
Allora
vg"(y) = 29'(y) = y(y* + )72 [3y% + 1 = 6y(y* + 1)** + 65°(y* + 1)] =
—2y(y* + 1) [3y7 + 1= 3y(y* + D'V?] =
=y(y* + 1) {32 + 1 - 6y(y> + 1)°/* + 65 (y* + 1)—
=20+ 1)[3y" + 1 = 3y(y* + 1)1/2} } =
=y(y* + 1) {3y + 1 - 6y(y> + 1)/ + 65°(y* + 1)~
—2(y2 + 1)(3y* + 1) + 6y(y* + 1)*?} =
= y(* + 1)7P[By + D)1 — 20 —2) + 67 (v + 1)) =
=y(y* + 1) (= 6y* — 3y* — 2y° — 1 + 6y* + 6y°)
cioe
vg"(y) —2¢'(y) = y(y* + D72 - 1)
Pertanto f/(z) = 0 se e solo se 4> — 1 = 0 i.e. per 22 = 1, quindi si hanno i due
punti zo = —1 e 23 = 1. f5 & convessa se y~° [yg"(y) —2¢'(y)] > 0 ed & concava se
vy~ [yg"(y) — 2¢'(y)] < 0. Allora f5 & convessa per y~*(y> + 1)™%2(y> — 1) > 0 ed &
concava per y~*(y? + 1)72(y2 — 1) < 0, quindi & convessa per y> — 1 > 0 (cio¢ per
y =3 < —1epery=a"?>1)econcava per y> —1 < 0 (cioe per —1 <y = z'/3 < 1).
In definitiva f5 & convessa per negli intervalli (—oo, —1), (1, 4+00) e concava nell’intervallo
(—=1,1). I punti x5 e x3 sono allora punti di flesso.

Esercizio 4.4. Studiare il grafico di

x+1
frwy = 2 *1

N GETL S

Esercizio 4.5. Studiare il grafico di

1 4r — 1 1
fo(z) = arctanz — 3% fio(x) = arctan ( a ) )

do 4]
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Esercizio 4.6. Studiare il grafico di
1
fii(z) =log(vVax? +1—x) — 2arctan — ,

x
logx — 1

———— +log(log”z + 1) .
logx—|—1+ og(log“x + 1)

fi2(x) = arctan

B Studio di f11<$>.

(A) Dominio della funzione

D(fu)={reR:Va2+1—-2>0, z#0}

Si osservi che la disequazione v22 4+ 1 > x & sempre soddisfatta per x < 0, mentre, per
x > 0, elevando al quadrato si ottiene z? + 1 > 22 che ancora risulta essere sempre
soddisfatta. In conclusione,

D(f11) = (—00,0) U (0, +00) .

(B) Comportamento agli estremi degli intervalli che compongono il dominio

1
lim (log(v 2 +1—1x)— 2arctan —) = 400,

T——00 €T
1
lim (log(\/x2 +1—x)— 2arctan —) =-2 (—E> =,
z—0~ T 2
1
lim (log(\/:zc2 +1— ) — 2arctan —) =-2 (f) :
z—0+ x 2
1
lim (log(v 2?2 +1—1x) — 2arctan —) = -2 (—Z> = —7.
T—+00 €T 2

Non vi sono né asintoti verticali né asintoti obliqui per x — 400 (la funzione in tali casi
¢ un infinito logartimico).

(C) Ricerca dei punti di estremo e monotonia della funzione

1 1 1 1
/ _ 2 ~1/2 _
= —(z*+ 1) 2)-1)|-2——— | —= | =
fll<x> (l’2 n 1)1/2 — (Q(x 1 2 T2
1+1 =
x
1 9 4 2
- 1)"Y2 1 -
(a:2+1)1/2—x[x(x+ ) ]+:1c2+1
B 1 x—(a:2—|—1)1/2+ 2 1 L2
(@24 D)2 —z (224 1)1 2+1 (224 DY2 0 2241
dunque
2 — (22 +1)/2
/ —
fi(x) = 22 1
Ne segue che f],(z) = 0 se e solo se 2 — (22 + 1)1/2 = 0 i.e. per 22 +1 = 4. I punti
estremali sono allora i punti z; = —v/3 e 25 = v/3. Il denominatore di f1, € positivo per

cui il segno di f]; & determinato dal segno del suo numeratore.
Sia I(z1,r) un intorno di xy: se z € I(zy,r) con x < x1, allora 2 > 3 e di conseguenza
22 +1 > 4 da cui (2% + 1)"/? > 2, risultando cosi f/, negativa nella parte sinistra di



Esercizi sullo studio del grafico di una funzione di una variabile reale 69

I(xq1,7) e quindi fi; strettamente decrescente in (x; — r,x1). Se invece z € I(x1,7),
con ¥ > w1, allora, poiché x; +r < 0, ¢ 3 > 22 e di conseguenza 2% + 1 < 4 da cui
(22 +1)1/2 < 2, risultando cosi f]; positiva nella parte destra di I(z1,7) e quindi fi;
strettamente crescente in (zq,x; + 7). Il punto ; = —v/3 & quindi un punto di minimo

locale con ordinata fi;(—v/3) = log(2 4+ v/3) + 2arctan ?

Sia ora I(z2,r) un intorno di zo: se x € I(x5,7) con z < x5, allora z* < 3 e di conseguenza
2?2 4+ 1 < 4 da cui (22 4 1)Y/2 < 2, risultando cosi f], positiva nella parte sinistra di
I(z9,7) e quindi fi; strettamente crescente in (z3 — 7,22). In modo analogo, se x €
I(xy,7), con & > T, allora 22 > 3 e di conseguenza x> +1 > 4 da cui (2?2 + 1)V/2 > 2,
risultando f{; negativa nella parte destra di I(xq, ) e percio fi; strettamente decrescente
in (xy, 75 + 7). Quindi il punto 2, = /3 ¢ un punto di massimo locale con ordinata

f11(\/§) = log(2 — V/3) — 2arctan ?

Infine la funzione & strettamente decrescente in (—oo, —v/3) e in (v/3,00) e strettamente
crescente in (—+/3,0) e in (0,/3).

(D) Ricerca dei punti di flesso e concavitda e/o convessita della funzione

I punti di flesso sono da cercare fra i punti del dominio di fi; per cui f]; = 0.

" (2 d (2 — (2® + 1)1/2) d (2 B (IQ n 1)1/2> (:L‘2 + 1)—1 _

D=\ T e )@
1
= —5(:1;2 + 1))@+ )T = [2— (@2 + D)V (2 + 1) 7P (22) =
= —z(2?+1)7%2 — 2z(2® +1)72 [2— (2> + 1)1/2} =
= —z(a®+ 1){ @@+ D) +2[2- (2> + 1))} =
= —a(2® + 1) [(2® + )2 + 4 - 2(2? + 1)"/?]
dunque
M) = —2(@*+ 1) 24— (2 + 1)V/?] .
In (—o0,0)U (0, +00) f1}(z) = 0 se e solo se 4 — (x? +1)Y/2 = 0 ovvero per (22 +1)"/2 =4
<= 22+ 1=16. I punti 3 = —/15, 24, = /15 sono i probabili punti di flesso. Poiché
(22 +1)72 > 0, il segno di f]; ¢ determinato dal suo numeratore. Se x < —+/15 allora
22 > 15 e di conseguenza z? + 1 > 16 da cui (2% + 1)'/2 > 4 risultando f},(z) < 0.

Dunque fi; ¢ concava in (—oo, —v/15]. Se invece —v/15 < x < 0 allora 2 < 15, di
conseguenza 2 + 1 < 16 da cui (22 4+ 1)1/2 < 4 risultando f]}(x) > 0. Dunque fi; &

convessa in [—/15,0). Il punto z3 = —/15 ¢ allora un punto di flesso con ordinata
V15
fi1(—=v15) = log(4 + V15) + 2 arctan T

Analogamente, se 0 < x < V15 allora 22 < 15, di conseguenza 22 + 1 < 16 da cui
(z% + 1)Y2 < 4 risultando f};(x) < 0. Dunque fi; & concava in (0,/15]; se invece
x > /15 allora 22 > 15, di conseguenza z? + 1 > 16 da cui (2 +1)"/2 > 4 risultando
" (x) > 0. Dunque f1; & convessa in [v/15, +-00). Il punto x4 = v/15 ¢ allora un punto di

15
flesso con ordinata fi;(v/15) = log(4 — v/15) — 2 arctan %
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Esercizio 4.7. Studiare il grafico delle funzioni

13(x) = x +logcoshx — tanhx u(x) = arcsinvV1 — 22 + V1 — 22 .
fis(z) g

Esercizio 4.8. Studiare il grafico di
2 —log 'z

V| log z|

Esercizio 4.9. Studiare il comportamento del grafico delle funzioni

fis(x) = V1+ a2 +arcsin(l +272)712 | fig(z) =

|z|—1

fir(z) = |2 =2z * ,  fig(z) = a’e

Esercizio 4.10. Studiare il grafico di

1+ [logz|
Siole) = 1 —|logz|

sin x

, fao(z) = |sinzle .

Esercizio 4.11. Studiare il grafico della funzione f(x) = \/g(x), dove g(x) € una funzione
assegnata.

B Soluzione.
(A) Dominio della funzione
I1 dominio della funzione f(z) e:
D(f) = {x € R : g(x) > 0}

La funzione f(x) non & derivabile nei punti dove g(z) = 0; questi sono punti di cuspide
per la funzione f(x).

(B) Comportamento agli estremi degli intervalli che compongono il dominio

Nel caso in cui si debbano determinare i limiti lim f(z) si noti che questi hanno senso

r—+o00
se lim g(x) > 0. In tal caso, se essi sono finiti, si ha:
z—+o0
li =,/ li
S0 =g o)

invece se lim ¢g(z) = 400, allora
r—+o00

In quest’ultimo caso vanno poi ricercati gli eventuali asintoti obliqui col metodo noto.
Se g(z) ha un asintoto verticale in x = a (i.e. lim g(x) = 00) e a & un punto di
r—a

accumulazione di D(f), allora anche f(x) ha un asintoto verticale in = = a; inoltre questo

puo accadere solo nel caso limi g(x) = 400 per cui si ha che limi f(x) = +oc.
Tr—a r—a

(C) Ricerca dei punti di estremo e monotonia della funzione

Poiché f(z) = g(x)/? allora
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o

Ne segue che i punti estremali della funzione g(z) (¢'(x) = 0) appartenenti a D(f) sono
anche punti estremali della funzione f(x) e inoltre il segno della derivata f’(x) & il segno

della derivata ¢'(x). Quest’ultimo fatto implica che se xg € D(f) € un punto di minimo
(risp.te massimo) locale della funzione g(x) allora zy € anche un punto di minimo (risp.te
massimo) locale della funzione f(z), e viceversa.

(D) Ricerca dei punti di flesso e concavita e/o convessita della funzione

£ =~ 90) g @)+ 5 gla) M () =
= 1 90) 2 20(2)g (2) ~ g (2)7]

o

I punti di flesso della funzione f(z) sono tra i punti di D(f) per cui

2g(x)g"(x) — g'(x)* = 0.
Inoltre, poiché lo studio e condotto per g(x) > 0, la funzione f(x) & convessa dove
29(x)g"(z) — ¢'(x)? > 0 ed & concava dove 2g(z)g"(z) — ¢'(x)* < 0.
|

Esercizio 4.12. Studiare il grafico della funzione f(x) = {/g(z), dove g(x) é una funzione
assegnata.

B Soluzione.
(A) Dominio della funzione

I1 dominio della funzione f(z) e:
D(f) =Dl(y) -
La funzione f(z) non ¢ derivabile nei punti interni del dominio D(g) dove g(x) = 0: tali
punti sono punti di cuspide per f(z).
(B) Comportamento agli estremi degli intervalli che compongono il dominio

Nel caso in cui occorra calcolare lim f(x) si noti che se lim g(z) e finito allora
T—F00 T—Fo0

lim f(x)= g/ lim g(x),

r—*+00 xr—+00

se zgrilmg(x) = Fo0 allora

lim f(z)= 400 ;

r—300
in quest’ultimo caso si cercheranno gli eventuali asintoti obliqui con il metodo noto.
Se g(x) ha un asintoto verticale in = = a (i.e. lim g(x) = oo) allora anche f(x) ha un
r—a

asintoto verticale in z = a e

lim f(z)=—00 se lim g(z)=—o0,
z—at r—aT

lim f(z) =400 se lim g(z)=+oc0.

rz—at r—a¥t

(C) Ricerca dei punti di estremo e monotonia della funzione
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Poiché f(z) = g(x)/? allora

f(@) = & g@) g (x)

o

Dunque i punti estremali di g(x) appartenenti a D(f) sono anche punti estremali di f(x),
inoltre il segno della derivata f'(z) € lo stesso della derivata ¢'(z). Quindi i punti di

minimo locale di g(x) appartenenti a D(f) sono tutti e soli i punti di minimo locale di

f(z), i punti di massimo locale di g(x) appartenenti a D(f) sono tutti e soli i punti di
massimo locale di f(z).

(D) Ricerca dei punti di flesso e concavitda e/o convessita della funzione

£(2) = 3 gla) P (@) + 5 o) (@) =
1

= 5 9(@) 7 3g(2)g" () — 29/ (2)7] -

o

I punti di flesso della funzione f(x) sono tra i punti di D(f) per cui
39()g"(x) — 29/ (2)? = 0.

o

Inoltre nell'insieme {z €D(f): g(x) > 0} la funzione f(x) & convessa (risp.te concava) dove

3g9(x)g"(x)—2 ¢'(x)* > 0 (risp.te 3g(z)g" (z)—2 ¢'(x)? < 0), invece nell’'insieme {z € D(f):
g(z) < 0} la funzione f(z) ¢ convessa (risp.te concava) dove 3¢g(z)g”(z) — 2 ¢'(x)* < 0
(risp.te 3g(x)g"(x) — 2 ¢'(x)* > 0).

[ |

Esercizio 4.13. Studiare il grafico della funzione

3 (a:—l)2.

fz) =

Esercizio 4.14. Pera >0 e b > 1/2, studiare la funzione

flx)=|—ax+0b+

laz +b]

B Soluzione.

(A) Dominio della funzione

D(f) =R\{~2} .

I caso.
—ar+b>0 —ax > b b b
= = z€(——, -].
ar +b>0 ar > —b a a
In tal caso | —ax + b| = —ax + b e |ax + b| = ax + b ; la funzione da studiare ¢ allora
fila) = —ar+ b+ e(-2. 7]
r) = —ax re(——, -].
! ar+b ' a’a
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b b
(Si noti che, essendo a,b >0, ¢ —— <0< —).
a a
b b
(Ig) Comportamento di fi agli estremi di (——, —|
a’ a

1
lim fl( )= lim (—ax—i—b—l— ) = +o0,
ax

xﬁfa Z‘—)—g)+ + b
b 1
f1(5) =3

) 1 1 1
Slccomeb>2 allorag<2 — 0<%<1

(Ic) Ricerca dei punti di estremo e monotonia di fy

filz) = —azx + b+ (ax +b)' = fi(z) = —a—alaz +b)~?

fi(z) = —a {1 + (aa:—}i—b)Z} :

cioe

1
Poiché (ax + b)*> > 0 si ha che 1 + ———— > 1 > 0 ed essendo a > 0 ne segue che
(ax +b)?
b
fi(z) < 0, per ogni x € (——, —), dunque f; ¢ decrescente in (——, —) e non ha punti
a’ a

estremali, quindi tantomeno, ha punti di estremo.
(In) Ricerca dei punti di flesso e concavita e/o convessita di fi
"(x) = 2a*(axz + b)~?

e poiché siamo nel caso ax + b > 0, ne segue che (azx + b)~3 > 0, dunque f](z) > 0, i.e.
b b

f1 & convessa in (——, —).
a’ a
II caso.
b
—ar+b>0 r< - b
— “, = w€(-00,—-)
ar+b<0 < ——
a
In tal caso |ax + b| = —ax — b e si ha da studiare la funzione
1 b
A . o0, 2.
fa(2) ax + e x € (—o0, a)
b
(I1g) Comportamento di fo agli estremi di (—oo, ——)

lim fy(z) = lim (—aaj—l—b— —
z——27 z——27

Ricerca dell’eventuale asintoto per v — —oo

lm 25— 1<—ax+b— ! ):
z——00 I T——00 I axr + b
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. 1 1
= lim [—a+—(b— )]:—a
T——00 T ar +b

lim (fo(z) — (—az)] = lim [(— who L b) . } _

T—r—00 T—r—00

= lim <b— L ):b
T——00 ax—i—b

Si ha dunque I'asintoto y = —ax + b.

(Ilc) Ricerca dei punti di estremo e monotonia di fo

fo(x) = —ax +b—(ax + b)) = f3(x) = —a+ alax + )2

e o) ()

ovvero

Allora fj(z) = 0 se e solo se —1=0o0 +1=0dacuiar+b—-1=0
ar +b ar +b
o 1—b 1+b . . \
oar+b+1=0,cioe fj(x) =0 per x; = e ro = ———. Sinoti che z; & da scartare
a
1-b 1 b

perché = — — — > —— (essendo — > 0) e l'intervallo studiato ¢

a a a a a

b 1+0b b
(=00, ——). Invece x5 € (—00, ——) perché _LiEh < ——.

a a a a

b
Si noti che — 1 < 0 per ogni x € (—o0, ——) perche nel caso in questione
axr +b a
ar +b < 0. Se x < x5 allora ar +b < —1 da cui > —1,ie 1+ > 0.
ar + ar +b
Pertanto se x < x5 allora f5(z) < 0 e questo implica che fy(z) ¢ decrescente.
. 1+0
Se invece x > x9 allora z > — — ax +b > —1 ovvero < -1 =
a ar +0b
1+ < 0. In tal caso allora fi(x) > 0 e questo implica che fy(x) ¢ crescente.
ax
1+0b
Dalla discussione fatta ne segue che il punto xo = — i e un punto di minimo locale,
a

140
inoltre fo(x) — fz(—%) — 21 2.

(Ilp) Ricerca dei punti di flesso e concavita e/o convessita di fo
() = —2a*(ax +b)73 .

Siccome nel caso studiato ax + b < 0, allora (az + b)® < 0, di conseguenza fy(x) > 0 e
fa(z) & convessa.

III caso.

—axr+b<0 x>
ar+b>0
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In tal caso | — ax + b| = ax — b, |ax + b| = ax + b e dobbiamo studiare la funzione

1 b
=axr—b - :
f3(x) = ax +ax+b , :UE[G,—i-oo)
b
(IT1Ig) Comportamento di fs agli estremi di [—,+00)
a

r—+00 Tr——+00

1
li = li - =
im  f3(x) im (ax + p— b) +o0

Ricerca dell’eventuale asintoto obliquo per x — +00

lim M: lim l(a:zc—lH— L ):

T—+400 €T x——+00 I

1 1
= —b =-b.
a;z:—i—b( +a$+b)

Si ha dunque l'asintoto y = ax — b.

(ITIc) Ricerca dei punti di estremo e monotonia di f3

ha)=ar=b+ @0 = fo)=a-aer+h)?=a|t- ]

1-0

Ragionando come nel II caso si trova facilmente che fi(z) = 0 per x5 =

1+ , . ...b
ed entrambe sono da scartare perché minori di —.
a a

Pertanto f3 non ha punti estremali né tantomeno punti di estremo. Notare che in questo

e Ty =

b
caso 1 + 2 > (0 e poiché x > —, ar +b > 2b > 1 quindi 1 — > (0. Dunque f3
a

ar + ar +b

¢ strettamente crescente in (2, 400).

(ITIp) Ricerca dei punti di flesso e concavita e/o convessita di f3
7 () = 2a*(az +b)° >0
perché siamo nel caso ax + b > 0, quindi f3 € convessa.

IV caso.

—az+b<0 x>
ar +b <0
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Questo caso non si verifica mai.

b
Si noti che il punto zg = — & un punto angoloso per la funzione f(z) in quanto
a

b
i L0 = S0) IO I
=T T —Xo z—>§7 T — é
a
. a b . a 1 1
:iiné ar—b |:f1(56’) _fl(a)] :if% p— <—aa:+b+ P —%) =
= lim [—CH— ¢ ( L —i)}:—a—l—lim ¢ 2b—a:r—b:
z—b ar—b \ax+b 2b st ar —b 2b(ax + b)
:—a—l—ilim b az = —a— 2
2b ot (ax — b)(ax + b) 4%’
mentre in modo analogo si calcola che
b
) — f(=
lim. f(xi_i(%) = lim_ ) ‘Z(a) _
T 0 x—)g T — =
a
b
fs(x) = f3(=) a
- imf b e

Esercizio 4.15. Studiare, al variare di a € R, il grafico della funzione
1
fa(x) = asinz + log ( sin?x — i sina:) .

B Soluzione.

(A) Dominio della funzione

1 1
D(fa):{xeR:sinzx—Z >0, \/Sin2x—1—sinx>0}:

1 1
:({xGR:sinxS—i}U{xER:Sinxzi})ﬁ

1
Nz eR: \/singa:—z > sinx} =

1 1
= ({xER:sinfL’S —E}U{meR:Sinmzi})ﬂ
1
F‘l({z €R:sinz <0} U{z €R:sinz >0, sin’ ~1 >sin21}> =

5
:({;L‘ER:%+2]{P7T§JZ§67T+2I€7T, ke Z}J
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7 11
U{r € R: om+2km <o < — 7+ 2hm, k:eZ})ﬂ
N({r eR: @b+ 1)r <o < (2k+2)m, ke Z}UD).

Limitiamoci a studiare la funzione nell’intervallo [0, 27| perché la funzione & periodica di
periodo 27: infatti

1
fo(z + 2k7) = asin(x + 2k7) + log (\/sin2(x + 2km) — 1 sin(x + 2k:7r)) =

/ 1
:asinx—f—log( sin2x—1—sinx> = fu(z) .

Dunque prenderemo
) 7 11
({x e [0,2q] - % <z<ZmpU{rel02m: cr<o< Eﬂ»)m

Nz €[0,2n] : 7 <z < 27}

per cui
11
D(fa) = [gm, ol
(B) Comportamento della funzione agli estremi del dominio
Si ha
11
fa(gﬂ) = flm) = =5 —log2.

(C) Ricerca dei punti di estremo e monotonia della funzione

1 7 11 1
Siano p(x) = sinx e g,(t) = at + log <\/t2 v t) per z € [éw, Eﬂ'] et e [—5,—1]

cosicché fo(x) = (9o 0 )(x). Allora fl(x) = gl (o(x))¢'(x) = g, (t) cosx, dove si & posto
11
—l la

6

a

7
t = ¢(x). Quindi f/(z) = 0 se cosz = 0 oppure ¢,(t) = 0. Nell'intervallo [671',

3
prima ¢ soddisfatta per xy = 3™ Si ha

:a+ = aq —

4
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1 1
Dunque ¢/ (t) = 0 se /1% — 12 la quale & possibile solo se a > 0; inoltre g/ () = 0 per
a
a’+ 4 1 , .
t= ——5, € (—1, —5) Affinché questa possa essere soddisfatta deve essere (a > 0)
a
a? +4 1 _ 2V/3
<< = > - = — :
2a 2 “© 73 @€ (57 o)

3 3
Se a € (—00,2?] allora f, ha il solo punto estremale zq = 5™ a cui corrisponde

3
to = sin o = —1. In tal caso ¢/ (ty) < 0.

3
Se a € (—o0,2—) allora ¢/, (ty) < 0 dunque esiste un intorno I(xg,r) tale che per ogni

x € I(xg,r), ¢,(t) < 0. Se x € I(xg,7) e x < x allora cosz < 0, se invece x > x
allora cosz > 0. Dunque per z < xy ¢ fi(x) > 0 e f, & crescente, mentre se x > x

e fi(x) < 0 e f, ¢ decrescente. Pertanto zy = 37 ¢ un punto di massimo locale e

3
fa(zm) = —a — log (1 + g) e il corrispondente valore di massimo locale.

3
Se a = 2? allora ¢ (to) = 0; sia I(xg,r) un intorno di z, di raggio abbastanza piccolo
1 1
in modo che per x € I(zo,r)\{zo} sia —1 < t < ~3 cosicché 1< t* < 1 da cui

0<t*— i < 2 che da ¢/ (t) < 0. Ne segue che, per x € I(xg,7), x < x¢, ¢ fi(z) > 0,

dunque f, e crescente, mentre per x > g, & f!(z) <0, dunque f, &

3 . .
decrescente. Pertanto xy = 57? e un punto di massimo locale.

Infine se a € (2?,—1—00), oltre al punto xy = §7r, si avranno due valori x1,x9 €

7 11 . ) a?+4
=7, —m] per cul sinx; = sinxg = ————
6 2a

6

3 3
sinx a sinistra di §7r ¢ strettamente decrescente mentre a destra di §7r ¢ strettamente

,con xp < §7r < x9. Sinoti che la funzione

crescente.
Stabiliamo ora se i tre punti estremali xg, 21 e x5 sono punti di estremo locale. Poiché

3
gi(to) = a— 2% > 0 esiste un intorno I(xg,r) tale che per ogni x € I(xo,7), g, (t) > 0.
Se x € I(xg,7) e x < xq allora cosz < 0, se invece = > xq allora cosx > 0.

Ne segue che, per x € I(xg,r), se © < xy allora f!(z) < 0, dunque f, & decrescente in
(xg — 7r,m0), mentre se x > xg allora f.(x) > 0, dunque f, ¢ crescente in (zg, o + 7).

3 3 3
Pertanto zo = 57 ¢ un punto di minimo locale e fa(§7r) = —a — log <1 + %) e il
corrispondente valore di minimo locale.

Poiché cosx; < 0 allora esiste un intorno I(z,7) tale che per ogni x € I(x1,7),
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1 244
cosx < 0. Sex € I(xy,r) e x < z7 allora —3 > sinz > sinx; ovvero —%a <t<
1 1, a?+4 , 1 a?+4 1 , 1 1
—§dacu11<t§ 12 :>0<t—1§ 1o —Zl.e0<t—1—1§;e

[1 1 1\ V2
di conseguenza /1% — 2 < —, pertanto a — <t2 = 4_1) < 0ie. g.(t) <0.
a

Ne segue che per x € I(z1,7) con z < x; € fi(x) > 0, dunque f, & crescente in (x1 —7r,x7).

, , 1 a?+4 .

Se x € I(xy,r) e x > x7 allora sinz < sinz; < —3 ovvero t < — o < —3 da cui
a

9 a?+4 1 5 1 1 . ) 1 1
t° > 12 >Z:>t —Zzgedlconseguenza t —Z—Lza,pertanto

~1/2
a—(t*— 2 > 0i.e. ¢'(t) > 0. Ne segue che per z € I(xy,r) conz >z e fl(x) <0,

dunque f, e decrescente in (x1,z1 + 7).

244 244
Allora 1 € un punto di massimo locale e f,(x1) = —% + log (2 + (I2—+> e il
a

corrispondente valore di massimo locale.

Poiché cos zy > 0 allora esiste un intorno I(x2,r) tale che per ogni x € I(xq,7), cosz > 0.

. . 1 a?+4 .
Se x € I(xa,7) e x < x5 allora sinz < sinzy < —5 ovvero t < By < —3 da cui
a
244 1.1 [ 1.1 1\ 2
2> @t — t*— = > — diconseguenza {/t2 — — > — e pertantoa— [ t* — - >0
4a? 4~ a? 4 " a 4

i.e. g\ (t) > 0. Ne segue che per x € I(z2,7) con x < zy ¢ f!(x) > 0, dunque f, & crescente
in (g — 7, xs).

1 244 1

Se x € I(zy,7) e x > x5 allora —3 > sinx > sin x9 ovvero _vate <t< —3 da
a
1 244 1 1 1 1
cul 1 <’ < a4:2 — 0<t?’— 1 < =k di conseguenza 1/t2 — 1 < 7 pertanto
: ~1/2
a— 12 — 1 < 01ie. gi(t) < 0. Ne segue che per x € I(xq,r) con & > g &
fi(xz) <0, dunque f, & decrescente in (9, x5 + 7).
244 2 244
Allora xo € un punto di massimo locale e f,(xs) = —% + log_l—Q—a_l— e il
a

corrispondente valore di massimo locale.

Infine la funzione ¢ strettamente crescente in [67T ,xq]U [§7r , To] € strettamente decrescente
3 U] 11 ]

—m| U [z2, —7].

2 “6

(D) Ricerca dei punti di flesso e concavita e/o convessita della funzione

Si noti che f7(x) = gq(0(2))¢'(2)* + g5 ((2))@"(z) = g5 (t) cos® x — g, (t) sinz cioe

in [.Z'l,

fa(@) = (1= t%)gy(t) — tgu(t) .
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Siccome

si ha

=t(1 — %) (t2 - i)m —t (t2 - 3)1/2 [a (t2 - i)m — 1] =
=t (t2 — %)_3/2 {1 -2 - (t2 — i) [a <t2 - i)m — 1] } =

N2 3 1\3/2
_ 2 1 9 2 1
—t(t 4) [4 a(t 4)

Percio

11 .
—], t =sinz < 0, resta

7
Poiché e lin,
oiché per x [67T 5

Se a = 0 allora f{/(z) < 0, dunque fy ¢ concava.
Se a # 0 allora si ha la soluzione

essendo, nel caso in questione, —1 <t < —3

11
I punti x3, x4 € [éw, EW] tali che sinx3 = sin x4 = t1, che hanno per immagine

1.9 9N J1 ]9
a = Ja = — - 1 — ,
Ja(@s) = falwa) = —a\[ 74|/ 752 +1os (16a2) VIV 62
sono punti di flesso.
, 1\ 7 11
Infatti nel dominio di f, ¢ t(t — Z) < 0; inoltre per x € [67?,1'3] U |24, EW] e

3

1 R A B (e 1V
thh<t<—-dacui—-<t"<tfquindi0 <t*—— < | — epercioa | t° — — < -

2 4 4 4
0,

4a 4
Di conseguenza, per a > 0, f’(z) < 0, mentre per a < 0, f/(x) > 0. Pertanto se a >
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11 11
fa € concava in [gw,xg] U [xy4, Eﬂ'], sea <0, f, & convessa in [éﬂ',xg] U [x4, FT(] .

3\** 1
Invece per = € [r3,74] ¢ —1 <t < t; da cui t? < t* < 1, quindi (4—) <t? - 2 che da
a

3/2
3
a <t2 — Z) > 7 Di conseguenza, per a > 0, f(x) > 0, mentre per a < 0,

f7(x) < 0. Pertanto se a > 0, f, é convessa in |[x3, x4, se a <0, f, & concava in [x3,x4].
|
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5. ESERCIZI SULLE FORMULE DI TAYLOR E DI MAC LAURIN
e Sia f derivabile n volte in un punto xy €D(f), n € N. La formula o lo sviluppo di
Taylor di ordine n di f in xg € 'espressione

f/l(xo)
2!

f(")(xo)

(x —m)* + - + p

f(@) = f(zo) + f'(2o) (7 — m0) +

ovvero

(x — 20)" + Ry (3 0)

) (g
f(z) = Z / k(! )(:v —20)" + Ry (z;20) -

Il polinomio di grado n

(z — 20)"

e detto il polinomio di Taylor di grado n di f in xq e la funzione R, (z;x¢) ¢ detta il resto
di Taylor di ordine n di f in z(; esso ha la proprieta

lim —Rn (5 20)

I s 0 aliag) = olle -z

Si hanno le seguenti rappresentazioni del resto:

e se f e derivabile n + 1 volte in z( allora

f(n-i—l)(xo)

Bon(;.20) = (n+ 1!

+e(x)| (x — zo)™ !

dove lim e(z) = 0.
Tr—TQ

e se f:D(f) — R ¢ derivabile n volte in un intorno I(xg,r) e per 0 < § < r esiste
fO+Y i (20, 20 +6), allora per ogni € (20, 29 +0) e per ogni funzione ¢ continua
in [z, x|, derivabile in (xq,x) con ¢’ # 0 esiste £ € (o, x) tale che

U(@) = (o) fUHD(E)

In particolare per ¥ (y) = x — y si ha il resto nella forma di Cauchy
(n+1)
Ry (75 20) = le(f) (x = &)"(z — o)
mentre per ¥ (y) = (z — y)"! si ha il resto nella forma di Lagrange
(n+1)
Rn<l’,$0) = JznTl()g') (SL’ — 1‘0)”+1 .

ese f:D(f) = R & diclasse C""! in un intorno di z allora esiste un intorno
I(xg,€) nel quale si abbia la rappresentazione integrale

R,(x;z0) = %/I f(n+1)(t)(:1: — )" dt .
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o o

e Siano f,g € C"(I (o, 1)) per I(zg,r) C D(f)ND(g) intorno del punto zg €D(f) N D(g).
Poiché

(f +9) P (o) = f®) (o) + g (o)
per 0 < k < n, la formula di Taylor di f + ¢ in z¢ e dato da

— [P (o) + g™ (o)
(f+9)@) =) o (z — x0)* + Ru(w;20) =
k=0
= n,f(xa ZL‘()) + Pn,g(x; ZL'()) + Rn(.’L', IO)

dove P, ¢(z;x0) e P, 4(x; ) sono il polinomio di Taylor di ordine n rispettivamente di f e
g in xg. Se f e g sono derivabili n+ 1-volte in un intorno destro di z, la rappresentazione
del resto nella forma di Lagrange e

(nt1)
Rn(ilf;l'o) — (f —i(_ng:— 1)‘ (f) (.CE - xo)n-i-l —
(n+1) (n+1)
_/ ((i)iiq)' (©) (x—x0)"™ , 2e<é<w.

e Sotto le stesse condizioni del caso precedente, poiché

(£ an) = 3= () 1 ol )

m
m=0

per 0 < k <n, la formula di Taylor di ordine n di fg in 2y ¢ data da
n k
1 k o
() =3 & (Z () s ang ><wo>> (@ = 20)" + B (wi0).
k=0 " \m=0
La rappresentazione del resto nella forma di Lagrange e

(n+1)
R,(x;z0) = % (x — 2o)" ™ =
G (mZ (") (m“f)g(”""“)(g)) (=@ m<g<a.

e Ad esempio se f(z) = (z — z9)g(z) € C"(I (o, 7)), essendo
FP (@) = (@ = 20)g™ () + kg™ (x)
la formula di Taylor in x( e

n (k=1) (, .
(@~ zo)gla) = 3 ) (o s (i) =

k=0
I A C)
—1)!
prd (k—1)!
dove, se g e derivabile n + 1 volte in un intorno destro di x(, rappresentando il resto nella
forma di Lagrange, e

(n)
R, (x;x0) = J nl(g) ( — )" +

(& = 20)* + Ry (w3 20)

g"to(E)
(n+1)!

(€ —zo)(x —z0)"™ |, @ <E<w.
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e La formula o lo sviluppo di Mac Laurin di ordine n di una funzione e la formula di
Taylor di ordine n della funzione in xq = 0. Riportiamo qui di seguito le formule di Mac
Laurin delle funzioni elementari e di alcune funzioni pit comuni:

. z? " = z*

o ¢ :1+x+7+-~~+m+Rn(a:,O): kOHjLRn(x,O)
il cui resto nella forma di Lagrange e
R, (z;0) eg ntl 0<Eé<
n\ T3 V) = T ) T,
(n+1)!
. ad a2 (G

[ ] SIH$ZI—§+§+"'+W.’E +R2n+2($;0)_

_ Zn: <_1)k 2k+1 +R ( . 0)
=0

il cui resto nella forma di Lagrange ¢

cos&
Rn 0 = _1TL+1— 2n+3 0< < .
2 +2<x7 ) ( ) (2”"’3)' ’ 5 o
2 2t —1)n
e cosr=1-— ?4-5 +---+ ((Zn;' x2”+R2n+1(aZ;0) =
~ (="
= E ™ + Ropy1(7;0)
|
— (2k)!
il cui resto nella forma di Lagrange e

Ropy1(7;0) = (=1)"* _COSE_ ani 0<é<o;
2 +1<Ia ) ( ) (2n+2)| x ) 5 €,

o (I+a)* =1+ (‘f)x (;‘>x2+m+ (Z)quH(x;O) -

k
il cui resto nella forma di Lagrange e

R, (z;0) = ( )(1 N R A D S

n+1
1 n
o o =lhate a4 R(;0) :kzzoa:’“ar(:lf;O)
dove, poiché
1—x"+1:(1—x)zn:xk — 1 :Zn:xk+xn+l
(z#1) 1—=x 1—2z
k=0 k=0
da cui
xn+1
Ry (7;0) = ;
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1 n xk-&-l
¢ s =Y R

con il resto dato da

@)= [ 15
R,i1(x;0) = / dt ;

n Lk

o log(l+z)= Z(—l)kk 1 + Rt (2 0)

k=0

con il resto dato da
R ( 0) /z (_1)n+1tn+1 dt
n+1\T; = ;
" o 14t

queste ultime due formule danno la formula

1 142 n x2k+l xt2n+2
| — A
D R k02k+1+/0 1— 2

dt ;

n 2k+1

x
e arctanz = z:(—l)]C
— 2k +1

+ Ropia(;0)

dove
x t2n+2

Rawia(a:0) = (<1 [t

o 1+t

, "L (2k — 1)1 g2kt
e arcsinz = Z + Rypi1(x;0)
2RI 2k 11

dove®

2 i x
Ropi1(z;0) = (2n+1) (1+§)—”—3/2/ 2042 gy

(2n +2)N 0

o

e Sia f(x) una funzione derivabile n volte in un punto xy € D(f) e si supponga che per
t = x — x4 sia nota la formula di Mac Laurin di ordine n della funzione’ g(t) = f(t + o),

o) = g0 + g+ L0y L oy IO o (.
Poiché = = p(t), per ¢(t) =t + xg, con ¢(0) = zg, ¢'(t) = 1, si ha
g(t) = f(e(t) = f(=) = 9(0) = f(z0)

() = () ') = [ (e(t)) — ¢'(0) = f'(x0)
)¢ (t) = " (e(t)) = ¢"(0) = f"(z0)
") = " (e) () = [ (e(t) = g"(0) = " (x0)

g™ (@) = f™ (1) (t) = f™(e(t) = g™ (0) = f™) (o) -

6(2k)1:=2-4---(2k —2)(2k) e (2k + )1 :=1-3---(2k — 1)(2k + 1).
"E ovvio che g(t) & derivabile fino all’ordine n in 0.
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Quindi la formula di Mac Laurin di g(¢) diventa

1 T " T
(@) = fa0) + (o) — o) + T (g T (o
(n)
bt L) s B
che e la formula di Taylor di ordine n di f in x( perché
fim Fol@i20) oy Bal0)

T—T0 (q: — xo)” t—0 tm

Esercizio 5.1. Determinare la formula div Taylor delle sequenti funzioni nei punti indicati
a fianco di ciascuna di esse:
1 ?+z+1

1) f@#)=s——,m#1 , (2) fz)=

—0.
1—=z syl 00

B Soluzione di (1). Il dominio di f & R\{1} che ¢ aperto e per ogni x # 1 si ha
@) =k(1-2)"t | VkeN,

allora la formula richiesta e
n

L 3 ((9”_—‘15())+Rn(x;xo)

l—z = (1- xg)k+1

dove, rappresentando il resto nella forma di Lagrange, e
(LC _ .To)n+1

Rn(m;x0> = (1 _ £>n+2 s

o< &<

Si osservi che
n

(x—20)" ™ — (1 —20)" M = (= 1)) (2 —20)(1 —20)" "
k=0
da cui si ricava per x # 1

(SE _ xQ)n-‘rl (1 _ .To)n+1 n

—~ = (z—a0)*(1 = m)" "

z—1 r—1
k=0

di conseguenza, con passaggi elementari, si ottiene

1 i ((az — xo)* N (x — x)" !

-z 1 —z)kt (1 — )" t(1 — 2)

che per paragone con la formula di Taylor scritta sopra da

([L’ _ JTo)nJrl

(1 —zo)"*t (1 —x)

R (%;20) =

Soluzione di (2). Il dominio della funzione & (—oo, —1) U (=1, +00) sul quale f & C*.
Poiché 22 + 2 +1=x(r + 1)+ 1 si ha
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quindi per la formula richiesta basta scrivere la formula di Mac Laurin della funzione

. Questa si ottiene dalla formula di Mac Laurin della funzione g(z) = sosti-
+1
x -
tuendo —x al posto di x, cioe
n+1 n+1 n 1)n+1xn+1
B Z 1 +r Z 1+
Siccome
n (_1)n+1$n+1
=T+ R L R
kzzo( ) 1+2x
n ( 1)n+1xn+1
=r+1l—-x+ Degh 4 —2 =
kz:;( ) 1+
la formula richiesto e
1'2 L4 n (_1)n+1xn+1
=1 e
r+1 + ;( ot + 1+x
[ ]

Esercizio 5.2. Determinare le formule di Taylor delle sequenti funzioni nei punti a fianco
indicati.
r+1 1 1

(1) f(fc):m P To=— (2) f(z)=2cos*x — coshz ST =3

B Soluzione di (1). Il dominio della funzione ¢ (—2, +00) nel quale la funzione f(z) ¢ C*°.

Poiché — € (—2,+00), ha senso scrivere la formula di Taylor di f(z) in questo punto.
T

1 1
Posto t = o — — ¢ x = ¢(t) per p(t) =t + —, di conseguenza la funzione g(t) = (f o ¢)(t)
T T
b tale che g(p 1 (2)) = (f 0 )¢ (2)) = flp(¢™(@))) = f(x). Basta allora determinare
la formula di Taylor di g nel punto ¢ *(=) = 0 essendo ¢ '(x) = z — —, ovvero basta

s
determinare la formula di Mac Laurin della funzione g(¢). Si noti che g(t) = (t + a)h(t)
per

1 1
=14+ — hit) = ———— .
a +7T ) () (t+a+1)1/2
Poiché
k
Z( )t+a(mh(km()

con (t+a)™ =0perm >2e (t+a) =1, allora g¥ (t) = (t + a)h® (t) + kh*~D(#) da
cui g™ (0) = ah®(0) + kh*=1(0). Pertanto la formula di Mac Laurin di g(¢) di ordine n
&

“~ ah®(0) + kh*=1(0)
g(t) =) o t* + R, ,(;0) =
k=0
—~100) =~ hD0)
—a ot +th + Ry y(;0) =
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=aP,,(t;0) +tP,_14(t;0) + Ry, 4(t;0)
dove P, ;,(t;0) indica il polinomio di Taylor di grado n di h nel punto ¢ = 0. Ora

t
a+1

—1/2
ht)=(t+a+1)?=(a+1)""? (1 + ) =(a+ 1)1 +s5)712

t
per s = ——. Dalla formula di Mac Laurin della funzione (1 + s)~'/2 si ha
a

ht) = (a + 1)1 [Z (_}ﬂ/ 2) " + Ra(s; 0)]

k=0
quindi il polinomio di Taylor di grado n di A(t) int =0 &

k=0 k=0
Allora
"L (—1/2 tk 1/2 thtt
9<t)—ah:0< X )—(a+1)k+1/2+2( )W+Rn,g(2§,0)_
1/2 1/2 tt
( ) (at1 k+1/2 +Z <g_ 1)W+Rn,g(t;0) =
a = tk —1/2 —1/2
- (a+ 1)1/2 - 2 (a+ 1)k+172 [( L )a + <k _ 1) (a+ 1)} + Ry 4(t;0)
dove®

(3)es ()= (12) (& o)+ () =
_ (;1_/3 (% n 1) _ (;i/i)a;kzk |

Dunque la formula di Mac Laurin di g ¢

g(t) = \/— < +Z ( 1/2)% tk> +Rn,g(t§o> .

Se rappresentiamo il resto di g nella forrna di Lagrange si ha

(n+1)! ’

R, 4(t;0) = O<n<t

dove, tenuto conto che

BO(t) = <‘2/2) Bt +a+ 1)1k

()= ()=

8Per ogni a € R &
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&
R, (t:0) = (n+a)h" () + (n+ DA ) oy _
o (n+1)!
1/2 —3/2—n —1/2 —1/2—n| gn+1 _
Kn+1> n+a)(n+a+1) 0 (n+a+1) " =
~1/2 2n +1
z( n/ ) (—h(n—l—a}#—n%—a%—l) (n+a+1)73/2 gt =
—1/2 +a /9 n un
:( n/ > <27;+2+1>(77+a+1) Bfmn gl
Ne segue che
1 " /—1/2\ a+ 2k 1\*
—1 _ o= _
ole” @) = 7=7 +;<k—1>k(a+1)k (x 7r) *

—1/2\ [ n+a /e 1\" ™
1 I e [P
+( " )(2n+2+ )(n+a+ ) (:c ﬂ)

1
e posto £ = n + — si ottiene la formula richiesta
T

1
n 1+ —+2k k
T 1 —1/2 1
= 14 = S | S i
/() 2r+1 +7T+Z (k:—1> (x 7r)

k
k=1 k (2 + 1)
s

—1/2\ [ £+1 _3/2-n 1\"*! 1
+( n )(—2n+2+1)(£+2)32 (w—;) L —<&<w.

Esercizio 5.3. Determinare le formule di Mac Laurin delle sequenti funzioni:
T+ 3

(1) f(ff):m . (2) f(x)=Vr—2+sinx.

Esercizio 5.4. Scrivere la formula di Mac Laurin con il resto nella forma di Lagrange
per le sequenti funzioni:

(1) fx)=vVa+2+ V-3 , (2) f(z)=|z|sinz.

B Soluzione di (2). La funzione f(z) = |z|sinx ¢ sicuramente continua in R e C*(R\{0});
verifichiamo se ¢ anche derivabile in tutto R: ’eventuale non derivabilita puo essere solo

in 0. Quindi

lim M: li |$|Sinff:hm —xsinx _o.
z—0~ X r—0~ e x—0 €T
lim M — lim |z| sin x ~ lim rsinz 0

z—0t i xz—0t i z—0 i
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che prova invece la derivabilita di f in 0 .Si osservi che

(d
e (—xsinz) per z <0
f'(x)=<X0 per =0
— (zsi >0
v (xsinz)  per z
cioe
—sinx —xcosz per x <0
flx)=40 per z =0
sinx + x cos per = >0
e
lim f'(x) = —lim (sinz 4+ xcosx) = 0 = f'(0)
z—0— z—0
. / BT . . e
mlg&f (x) = i%(smx+xcosx) =0=f'(0).
Quindi f’ & continua in 0 e di conseguenza f & di classe C'(R). Verifichiamo ora la

derivabilita in 0 di f”:

) "(z) — (0 . —sinx —xcosT . sinz
lim M:hm = —lim +cosx = —2,
z—0~ xT z—0 x z—0 I
i "(z) — (0 . sinz + xcosx . sinz
lim M:hm—:hm +cosx=2.
z—0t X z—0 xT z—0 I

Dunque f’ non ¢ derivabile in 0 e f ¢ C?(R); possiamo scrivere solo la formula di Mac
Laurin del I ordine

f(z) = f(0)+ f(0)x + Ri(z;0) <= |z|sinz = Ry(z;0)

dove, essendo tuttavia f € C*(R\{0}), possiamo rappresentare R; nella forma di Lagrange
e precisamente, se x < 0 allora per qualche £ € (z,0) &

" _2 ]
Ry(z;0) = fT(g) 2 = Ry(x:0) = cos§2—|— £siné 2
in modo analogo, se x > 0 allora per qualche £ € (0,x) &
2cos€ —Esing
x“ .
2

Ri(z;0) =

Esercizio 5.5. Scrivere la formula di Mac Laurin del IV ordine con il resto nella forma
di Lagrange per la funzione

-2+ 1D)Y2 | >0

—= <0.
237 , T

Suggerimento. Usare lim = «, per ogni a € R.

z—0
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Esercizio 5.6. Scrivere la formula di Taylor del II ordine nei punti xtg = —1 e zg = 1
per le funzioni
2?24+ z+1 2> —x+1
1 =z T=r- 2 == =T
1) f) = (@) s =
22 —x+1

B Soluzione di (2). Il dominio di f(z) = — 1 ¢ R\{1} e intanto non ¢ possibile
1‘ p—
scrivere la formula di Taylor di f in 1. Rimane da scrivere la formula in —1 il quale e
3

possibile perché f € C>*°(R\{1}). Si ha f(—1) = —5¢€

fla)=e-1)z-)" =@ —z+1)(z—-1)"=

=(@-1)[2z-1)(z—1)— 2" +z—1]

da cui
Fla)=@-1)26-2m) = f-1)=">
(@) = =2(x = 1)7*(a* = 22) + (v = 1) (20— 2) =
= (¢ —=1)7 [-2(a” = 22) + (z — 1)(2z — 2)]
da cui

1
fla)=2w -1 = f-1)=-
Allora si ha la formula di Taylor del secondo ordine in —1

w?—x+1 3 3 1 9
?——54‘1(%—1-1)—@(1’4-1) —|—R2(SE,—1).

Se ad esempio rappresentiamo 'errore nella forma di Lagrange si ha, per qualche & €
(—1,z) (0 & € (z,—1)),
(z+1)°

G
€1y

3!
(perché f"(x) = —6(z — 1)71).

Ro(z; —1) (x+1)7° <= Rylx;—1)=—

Esercizio 5.7. Determinare la formula di Taylor del II ordine con il resto nella forma di
Lagrange per le sequenti funzioni nei punti a fianco indicati:

(22 —4)?log |z —2| , x#2
(1) g(x) = , inx=2,
0 , T=2

(z2 = 9)log|z —3] , z#3
(2) h(x)= , in r=3.
0 , x=3
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B Soluzione di (1). Il dominio di g ¢ R ed ¢ di classe C*°(R\{2}). Verifichiamo dapprima
la continuita di g in 2:

: 2_ 2 _ — |5 2 — 2 — = —=
glﬂl_}r%(:lj 4)*log |z — 2| 91E1_>H§(:1:~|—2) (x —2)*log |z —2|=0=g(2),

dunque g ¢ continua. Verifichiamo ora la derivabilita di g in 2:

—g(2 2 4)%] -2
o) —g@) (- 9logle —2|
r—2 ;E—Q xr—2 .23'—2
L (@422 —2)%logle -2 ) B
—9161_% p— —glcl_%(x—i-2) (x —2)log|lz—2|=0.
Di conseguenza g e derivabile in R e
(d
%<I2 —4)?log(2—2) , <2
g/(x) = < 0 , X = 2

d, o 2
\%(w —4)*log(x —2) , x>2

cioe
4r(z? —4)log(2 —x) — (22 —4)*2—2)™' |, z<2
gdx)=<¢0 , r=2
4z —4)log(z — 2) + (2> —4)*(x —2)"t |, z>2
che possiamo scrivere come
(2?2 —4)[4xlog(2 —x)+x+2] , <2
gl(x) =40 , T =2
(2?2 —4)[4zlog(z —2)+x+2] , =>2.
E ovvio che ¢’ € C°(R\{2}), quindi verifichiamo soltanto la continuita di ¢ in 2:
lim ¢'(z) = Tim (2% — 4)[dzlog(2 — x) + = + 2] =

T2~
= lim 4x(2* —4)log(2 — 2) + lim (2° —4)(z +2) = 0= ¢'(2) ,
T2~ T2~
lim ¢'(z) = lim (2° — 4)[4rlog(x —2) + x + 2] =
z—2+1 z—2t
= lim 4x(z® — 4)log(x — 2) + lim (2* —4)(x +2) =0 = ¢'(2) .
x—27F z—2+

Percid ¢’ € C°(R); vediamo se ¢’ & derivabile in 2:

/ ! 2 _ —
lim J(x)— 4 (2) — lim (x* —4)[4xlog(2 — x) + x + 2] _
r—2~ x—2 T2~ x—2

= lim (z + 2)[4zlog(2 —z) + x + 2| = —0c0 .

T2~
Ne segue che ¢’ non & derivabile in 2 e quindi ¢ non & derivabile due volte in 2: non &
allora possibile scrivere la formula richiesta.
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Esercizio 5.8. Scrivere la formula di Mac Laurin delle sequenti funzioni in modo che il
loro valore nei punti indicati sia determinato a meno di un errore di 1073:

1
(1) f(x) =cos’z —arctanz in z = 1

B Soluzione di (2). Per la g(z) = (v + 1)(2 + 2)~"/? si ha:

D@+ =22y (14 2) 7

H

Postot = = ¢

[\

I
3
/\l\
w{
)
~_
[\DlH
Bl ol
+

=

3
~
N8
o

~

k=0
dove
x 1 -1/2 3 T
. _ 1 n—3/2,_ n+1 Z
Pertanto
L 2\ e T
~1/2 _ T
v o B (1) on )
1/2\ x x
()5 ()
dove

= 1/2 o S —1)2 xk . —1/2\ ™!
ps 28 = \k-1 n+1) 20’

"L (—1/2\ zF 1/2
)2 (V)5
k=0 1

N——

e
Il
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g; 0) = O(2™*2) si ha’
_ 1 = —1/2 —1/2\] «*
1)(2 vz .~ ) 9 o
wrveen = ol SR ) (7)) 5

—1/2\ 2" (=12 2y a1
1 —-3/2—n —
+( () arge o

7wl ()]

e poiché Rn(%; 0) = O(z"), 2R,(

1 —1/2
2 1 73/2771 n+1'
+2n+1\/§<n+1>[ +(1+¢) E:
Risulta allora che il resto n-simo della formula di Mac Laurin di g(z) ¢
1 —1/2 x
R, (2:0) = 2+ (1 —n=3/2) pntl 0<é< =
@0 = 5 () R A 0<e< s
si vuole che
1
()
7r
cioe /
1 —1/2 1 1
2 1 —n—3/2 <
on+1,/2 [ +(1+¢) ] (n—i—l) an+l = 103

1
an+l < 3n+l’

1
per 0 < ¢ < Py Poiché (1+£)7"7%/2 < 1 allora 2+ (1+&)™"~%/2 < 3, inoltre
m

Percio bastera scegliere n in modo che sia

1 —1/2 - 1
2n+l\/§3n n-+1 103 ’
Siccome
(1) ()
=1} =22 p
—1/2 _ 2 2 2 :(_1)n+11-3---(2n—|—1):
n+1 (n+1)! 2rtl(n +1)!
_(_1)n+1 (2n+1)”
2ntl(n 4+ 1)!
allora basta scegliere n € N in modo che sia
I
(2n + 1)!! < 1

— V222230 (n 1)1 ~ 108
Ynfatti per « € R e k € N si ha:
a a\ ala—1)---[a—(k-2)]  ala—1)---la—(k—-1)]

(k—l) - (k) - k1) + R

=afla—1)[a—(k—2) {(k_ll)!JrOé—(:!—l)} =afla—1)(a—k+2) <k+0‘k_'k+1> _

_ (O¢+1)oz(oz—lk)!-~-(a—k:+2) _ (azl).
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Esercizio 5.9. Determinare la formula di Mac Laurin delle sequenti funzioni in modo
che il loro valore nei punti indicati sia dato a meno di un errore non superiore a 107%:

2
(1) f(x):sin2g—arctanx in T=73,

1
(2) g(z) =2sin’z —sinhz in z=3,

1
(3) h(x) =cos’x +2coshz in =

B Soluzione di (2). La funzione ¢(z) = sin’r ¢ C® su R e
Y (z) =2sinzcosz =sin2zx = ¢'(0) =0

O"(x) = 2cos2x = ¢"(0) =

(p(3 () = —2%sin2x = ¢®0)=0
@) (z) = —2% cos 27 = p®(0) = -2°
®)(x) = 2*sin 22 = p®0)=0
©)(2) = 2° cos 2x — p©0)=12°

da cul facilmente si ricava
0P (1) = (=1)F12% 1 cos 20 = R (0) = (—
PP () = (=1)*2%sin2x = ¢ (0)=0.

Si ha allora la formula di Mac Laurin

2
sin2$ = Z(—l)k+1 (2k) $ + R2n+1 (p(ilf O)
k=0

Per la funzione ¢(z) = sinh z si ha
Y@ () =sinhz = Y(0)=0
P+ (1) = coshr = ¢@+D(0) =1

quindi
n p2k+1
sinh .z = Z 2k + 1)l + Ronto,y(2;0) .
=0 .
Pertanto per g(x) si ha
" 22k$2k n x2k+1
in? i — k+1 '
2sin"x —sinha = Z<_1) (2k)! - —(2k 1) + 2Ron41,,(2;0)
k=0 k=0
fove (2n+2) 2(n+1)—1
n+ 2 n4+1)— 2
|2R2n+1 ¢($;O)| =12 ('0—(@ 22| — cos 2§ 2n+2| _
’ (2n + 2)! (2n + 2)!
B 22n+2 COS 25 P < 22n+2 ‘ |2n+2

(2n +2)! (2n +2)!
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1
Siccome in x = 5 deve essere 2R2n+1,¢(§; 0)| <107*, si ha
1 22n+2 1 1
2Ry, = 0)] < = ,
' nt1p(530)) < (2n +2)! 22712~ (2n 4 2)!

basta scegliere n € N in modo che sia (2n + 2)! > 10%, e.g. n = 6.
|

Esercizio 5.10. Determinare la formula di Mac Laurin del III ordine con la rappresen-

tazione dell’errore nella forma di Cauchy per le sequenti funzioni:
_ 22 — 3z
(1) flo)=(2+20)""" , (2) g(x) =

x4 a2’

Esercizio 5.11. Determinare la formula di Mac Laurin del III ordine con la rappresen-
tazione dell’errore nella forma di Lagrange per le sequenti funzioni:
2z +1
x?—x

(1) h(z) =tan’z —32* , (2) k(z) =

Esercizio 5.12. Scrivere la formula di Mac Laurin e di Taylor in x = 3 del IV ordine
con il resto in forma integrale della funzione
323 — 222 — 51 + 6

x?—2x—3 '

l(x) =
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6. ESERCIZI SUT NUMERI COMPLESSI

Esercizio 6.1. Verificare che per ogni a,b, o, 5 € R il numero complesso
(a + bi)e* P + (a — bi)e* ™

¢ reale.

Esercizio 6.2. Provare che se z,w € C sono tali che |z + w| = |z — w| allora argz =

4
- argw.
2 g

Esercizio 6.3. Che relazione intercorre tra z e w € C affinché sia

T
Ar = =7
gz—w 2

Esercizio 6.4. Determinare la forma algebrica e polare dei sequenti numeri complessi

1) (2-20)* | (2) (\/6+\/§+i(x/6—\/§>3.

Esercizio 6.5. Determinare la forma polare e algebrica dei numeri complessi
(1) (320)'° , (2) 1.

Esercizio 6.6. Determinare la forma polare di

(1) V—4-4v3i . (2) ¢ (11;?5'

Esercizio 6.7. Determinare la forma algebrica dei numeri complessi

) (<z'—,1>4)”3 @[BTI )

1/4

1

Esercizio 6.8. Siat = /3 + T, w = V3+iez=—2. Determinare la forma algebrica

e polare di
Zw

t+ .
zZ+w

Esercizio 6.9. Determinare la forma algebrica e polare dei sequenti numeri complessi
i—+/3 1+ +/3i
(1) LY gy VI
(1—1) (—V3—1i)

Esercizio 6.10. In C risolvere le sequenti equazioni
(1) 1+4)P2t=1 , (2) 22+64=0.

Esercizio 6.11. In C risolvere le sequenti equazioni
|z = V6|

1) |22+ V3(Smz)i=4—3i , (2) |Z_\/§’:{\z+\/6|



98 Elisabetta Barletta

Esercizio 6.12. In R? determinare i sequenti insiemi:

(1): {zeC:|z—2/ <4} , (2) {ZGC:ArgZ:ZW},

=4} . (@) {zeClz 41 = ](29mz+ i)

(3) {eC: '%’

Esercizio 6.13. Determinare © valori di A € R per cui

(1) lequazione A\z* — 2z + 1 =0 ha radici complesse coniugate di modulo 1
1
(2) lequazione A\z? — 2z + 1 =0 ha radici complesse coniugate di modulo 5

(3) l'equazione z* — 2X2* + 4 = 0 non ha radici reali.

Esercizio 6.14. Determinare i valori di A € C affinché siano risolubili i sequenti sistems

linears
Q) Ny —y=0 0 Nr+y=1+)\2
ANz+y—1-X=0 T+ Ny = N1+ \?)

Esercizio 6.15. Risolvere in C le sequenti equazioni
(1) 2*—2i22 —-1-(1+4)*=0 , (2) °+22+1=0,
(3) 225 +228+1=0.
Esercizio 6.16. Determinare la forma algebrica dei numeri complessi

d—1 4—2
2—i ' 3—4

2430+ (24 30)(1—30) .
Esercizio 6.17. Trovare z € C tale che sommato al doppio del suo coniugato dia 5 — 3.

Esercizio 6.18. Rappresentare in forma polare i numeri complessi 3, \/2, 4 + 43, /—1,

16, (1), i, i,

Esercizio 6.19. In C risolvere le equazioni

P24224i=0 , 2|2|-22—-1=0 , 22+22=1+2 , 2*-62+4=0.

Esercizio 6.20. Determinare i valori di N € R per cui tutte le soluzioni dell’equazione
24 — 222 + X\ = 0 non siano reali.

B Soluzione. Poniamo w = 22 € C, quindi I'’equazione diventa w? — 2w + A = 0. Poiché!

b2 — dac 4 — 4\
_ —1-)€R
4a2 4 Ae

1086 422 4+ bz + ¢ = 0, per a,b,c € C, allora le sue soluzioni sono

b e .0 b? — dac b2 — 4ac
z:——:i:\/;(cosi—i—zsmg) per r = 5| 9:Arg<4a2> )

2a
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le soluzioni dell’equazione sono

Arg(1— A Arg(1— A\
w=1=+ ]1—)\\(005%4—2'8111%)

dove in tal caso |1—A| ¢ il valore assoluto del numero reale 1—X e Arg(1—X) =0se 1—-\ >0
eArg(l—AN)=7msel—XA<0. Per \=1¢w =1 e pertanto 'equazione z* — 222 + X = 0
ha le due soluzioni reali (ciascuna di molteplicita due) z = +1. Se 1 — A >0 (i.e. A < 1)
alloraw = 14++/1 — XA € R, di conseguenza ’equazione z* —2z%+\ = 0 ha tutte radici non
reali se 1 =41 — A\ < 0 ovvero se in contemporanea ¢ vV1 — A < —1 e v/1 — XA > 1. Poiché
la prima ¢ falsa, nel caso A < 1 l'equazione z* — 222 + X\ = 0 ha almeno una soluzione
reale. Infinese 1—A <0 (i.e. A > 1) alloraw =1V — 1(Cosg+ising) =1+ivA—1

e le soluzioni dell’equazione dell’esercizio sono tutte complesse, date da zy, Zg, —20, —20

arctan v — 1

5 :
In conclusione I'equazione z* — 222 + X = 0, per A € R, ha tutte soluzioni non reali per
A> 1

per 2o = VA(cos§ + isinf) con =

]
Osservazione 6.1. E noto che per x € R si ha
iT L —iT L
e’ =cosr+isinr , e " =cosx—isinw
da cui si ricava
eix + e—ix ) eiaz _ e—i:!:
(6.1) cosr=——— , sinr=——
2 21

I secondi membri della (6.1) hanno senso anche per z € C, quindi definiamo il coseno e il
seno di un numero complesso z € C come

eiz + e—iz ) eiz o e—iz
cosz:=——— | sinzi=——
2
Esercizio 6.21. Verificare che per z € C
(1) cos(z+ 2km) =cosz, sin(z+ 2kw) =sinz, Vk € Z;
(2) cos’z+sin®=1;
(3) cos2z = cos?z —sin? z, sin2z = 2sin 2 cos z;

z 1+ cosz 1/2 .z 1 —cosz 1/2
(4) cos=—=——— , sin— = —— .
2 2 2 2

B Soluzione di (1). Si ha

ei(z+2k7r) 4 e—i(z+2k7r) ez gi2km + ez p—i2km
cos(z + 2km) = = =

2 2
eiz + efiz
=5 =cosz,
‘ 6i(z+2k7r) _ e—i(z+2k7r) eizeiQkTr _ e—ize—i2k7r
sin(z + 2km) = 5 = 5; =
7 7

e® — i )
= —— =35sinz.
21
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Soluzione di (2). Si ha
1 . . . )
cos® z + sin® 2 = 1 [(6” + 6_”)2 — (e — e_wﬂ =

[627;,2 L9 4 e 2z (627;,2 _94 6721'2:)] _

il NG

(€2iz + 24 6—2iz . 62iz +92 - 6—2iz) -1
Soluzione di (3). Si ha

(eiz + efiz)Q (eiz _ efiz)Q

2 )
cos“ z —s = =
Z mn- z 1 + 1
= | . n | | =
26212 + 26—212 6222' + 6—212 5
= = = cos 2z
4 2 ’
1z 1z 12 —1z 21z —2iz
QSinzcosz:Q6 2,6 ¢ +2€ = ° 2,6 =sin2z .
1 7
Soluzione di (4). Si ha
l1+cosz 1 1+eiz—|—6_iz 24
2 2 2 N 4
2 4 e2iz/2 4 o—2iz/2 B (eiz/2 +e—iz/2)2 B )z
- 4 - A Sy
1 — cos z B 1 | etz + ez B 9 _ elr _ piz B 9 _ €2iz/2 _ e—2iz/2
2 2 2 N 4 N 4
(eiz/Q _ e—iz/2)2 Lz
= — = sin”“ —
4 2

di conseguenza

z 1+ cosz 1/2 .z 1—cosz 1/2
cosS— = —— , sin-—=|———
2 2 2 2
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7. ESERCIZI SUGLI INTEGRALI INDEFINITI

Premettiamo una breve ricapitolazione delle sostituzioni da fare in alcuni tipi di integrali
classici.

Integrazione di funzioni razionali fratte

I—/ dx
] ax2+bx+c

dove A = b? — 4ac < 0. La sostituzione

e Si consideri l'integrale

2ax + b
 24a
permette di scrivere
I:/L = 1 arctant + C
aA?2(t?+1) aA

ovvero

/ d _ 2 arctan 2az b +C
ar? +br+c  J—A vV=A .
e Si consideri l'integrale
p(z) o
I:/—dzr: ., p(x), q(z) polinomi in x .
o (@), a(a)

(i) gr(p(z)) < gr(q(z)),
q(x) = alx —z)™ - (x — 2p)™ (12 + bz + )™ - - (apw® + bpx + )™
con A; = b2- —4ajc; < 0,1 < 5 <k, si decompone

27 Z i Bj i Cj(QCIjQT + b]) n
q(x) Toa a;z? +bjx+c¢;  ajx?+bjx + ¢

d s(z)
[Tisi (= @)™ Hj:l(ajx + bjz +¢;)"

Quindi
h k
2B; 2a;x + b;
I= A;log |z — ;| + I arctan | ——— | +
> togfa -+ 3= 2P st (2]
1= ]_1 J ]
k
+ Z Cjlog(a;z® + bjx + ¢;)+
=1

s(x)

+— - +C.
H r— ;)" 1H (a;z® + bjx + ¢;)™ !
i=1 j=1

(ii) gr(p(x)) > gr(q(x)): si esegue la divisione tra p(z) e g(z) ottenendo

p(z) = m(x)q(x) +r(z) , gr(r(z)) <er(q(z))
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Iz/%dﬂf:/m(z)dm—%/%daﬁ
r(z)

e l'integrale / ———= dx si risolve come in (i).
q()

quindi

Integrali trigonometrici
e Si consideri I'integrale

I= /R(cosx,sinx) dzx ;

la sostituzione

X
t = tan —
2
da
1 . 9 0 = 2
cosr = —— sinz = -_-
1+ 1+ @ 7 1+ 12

Queste riconducono l'integrale dato all’integrale di una funzione razionale fratta.
Integrali abeliani

e Si consideri l'integrale

I = /R(x, V1 —22?)dx

1—=z
t =4/
1+

ci si riconduce ad un integrale di una funzione razionale fratta.

con la sostituzione

e Si consideri l'integrale
= /R(a:, Va2 +a)dx
con la sostituzione
(t+x)?=2"+a , a€R

ci si riconduce all’integrale di una funzione razionale fratta

e Si consideri I'integrale
I= /R(:v,VaxQ + bz +¢)dx .

Se a > 0 si considera la sostituzione
. 2ax + b
o 2ya

Se a < 0 si considera la sostituzione

B —2ax — b

"=
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In ogni caso si e ricondotti all’integrale di una funzione razionale fratta.
Integrale differenziale binomio

e Si consideri l'integrale

(7.1) Lynp = /xm(a + bx")P dx

. . m+1 m+1 .
con m,n,p € Q. Questo e risolubile se almeno uno tra p, , P+ e intero. Le
n n

sostituzioni da fare sono:
e Se p € 7Z si considera la sostituzione

Tl T2
Usis2 per m=—, n=-—2.

S1 59

t==x

r
e Se p € Q\Z, scritto p = —, si considerano due casi:
s

Q) m+1

€ Z: si prende

t=(a+bz™)V/*

€ Z: si prende

. (a+bt)1/5
t=zx", u= : .

In ogni caso si e ricondotti alllintegrale di una funzione razionale fratta.

Esercizi

Esercizio 7.1. Calcolare i sequenti integrali indefiniti

(1) /sinha:dx , (2) coshzdzx.
B Soluzione di (1). L’integrale ¢ immediato e

/sinh xzdxr = coshz + C' .

Soluzione di (2). Come per (1),

/coshxdx =gsinhx +C'.

Esercizio 7.2. Calcolare 1 sequenti integrali:

(1) /934/5d:v . (2) /xzmczx.
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Esercizio 7.3. Calcolare i sequenti integrali

(1) /x\/6—i—x2dw , (2) /(x+1)(x2+2x—5)6/7dx.

Esercizio 7.4. Calcolare

(1) /Singwcos4xdx . (2) /x4logxdx.

Esercizio 7.5. Calcolare

(1) /sinlogxdx . (2) /arcsinxdx.

Esercizio 7.6. Calcolare i sequenti integrali

(1) /arccosxdx (2 /%dl«.

Esercizio 7.7. Calcolare i sequenti integrali
6 :
(1) /mdx . (2) /4smhxd:1:.

Esercizio 7.8. Calcolare

(1) /3—””@: (@ /ﬂd;p.

22 — 3z + 2 2 —3x+3

Esercizio 7.9. Calcolare

(1) /ﬁdm (© /\/%dx.

Esercizio 7.10. Calcolare
1 cos 2x
1 d 2 —dx .
(1) /e—x/?’ v (2 /sinxcosx v

Esercizio 7.11. Calcolare gli integrali

(1) /(33:+1)2/3dx . (2) /(4.:1:—9)5dw_

Esercizio 7.12. Calcolare gli integrali

1 5)
(1) /sinQIdx - (2) /coszxdx'

Esercizio 7.13. Calcolare gli integrali

(1) /Siixda: (@ /Coixd:c.
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Esercizio 7.14. Calcolare i sequenti integrali

VT / 1
1 —  _d , 2
(1) 1+ tan?zx o (2) V1 — 22 arcsinz

Esercizio 7.15. Calcolare

(1)

dx .

arcsin & arcsin®

——dx , (2 —_—
V1 —a? @) V1—a?
Esercizio 7.16. Risolvere i sequenti integrali:

arcsin~ 7z sin(1 — v/
W[ @) /(;Tx\/_)d:c.

Esercizio 7.17. Risolvere gli integrali:

(1) /( 2 s e (2 /x4sin:pdx.

dr .

sinxz — cosx

Esercizio 7.18. Risolvere

(1) /e“cosxda: . (2) /\/Elogxdx.

Esercizio 7.19. Risolvere gli integrali:

2+ 1 2 —1
1 ——d 2 ————dx.
(1) /x3+3x2—4 v, (2 /x3+3x2—4 o
Esercizio 7.20. Risolvere gli integrali

?+r+1 dr — 3
(1) /(2x+3)2(3x—1) de (2) /(2x2—3x+2)3 d .

Esercizio 7.21. Risolvere
I S | tan
1 d 2 —dzr .
(1) /(2x2—3x+2)2 z 5, (2 /1—sinx v
Esercizio 7.22. Calcolare gli integrali

(1) /ﬂdx . (2) /ﬂdx.

1+ cosx 1+ coszx

Esercizio 7.23. Calcolare gli integrali

(1) /Slidx . (2) /Mdm,a>0.

1+sinx

Esercizio 7.24. Trovare le formule iterative per

In:/sin":cdx , Jn:/cos”:cda:,

dove n € N.
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Esercizio 7.25. Trovare le formule iterative per
[n:/exsin”xdx , Jn:/ex cos" xdx ,
dove n € N\{0}.

Esercizio 7.26. Determinare, in funzione di m,n € N\{0}, la soluzione dell’integrale

Iy = /sinm x cos" xdx .

Esercizio 7.27. Calcolare i sequenti integrali:

(1) /ﬁdm . (2) /(xij_ll)?dx'

Esercizio 7.28. Calcolare:

2 +r—1 dx
1 de , (2) | —S
()L/@$+D%ﬁ+ﬂx+@ v <)g/x+V1—ﬁ
Esercizio 7.29. Calcolare

(1) /\/x2+5dx (@ %dx.

Esercizio 7.30. Calcolare
xr—1

(1) /;i%?ﬁdx, (”_/1_¢pt§;:§“'

Esercizio 7.31. Risolvere gli integrali

(1) /\/—xz—l—x—ldx . (2) /\/—a:2+x+1dm,
(3) /(3:+2)\/.21:2+4a:+3dx.

Esercizio 7.32. Trovare la formula iterativa per
d
I = / @
@1y
pern € N.

W Soluzione. Si ha
per n=0 IO—/da:—x+c , ceR

dx r—1
-1 I, = =1 - eR
per n , 11 /x2—1 og ’a:+1‘+c’ &
perché
1 Ay Ay 1
21 1-1 741 ! 272
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Sia n > 2 e decomponiamo

1 1—x2+x2_ x? 1

(7.2)

@=Tr " @1 @ @1

x? 1 2x
/—(x2 “ 1y dr = 5/—(302 “ 1y rdr =

1 2 _ 1 —n+1 1
= = (v ) T — /(x2 —1) " dr ) =
per parti 2 1—n 1—n

1 T 1

dove

=9 on @11 a2
Allora integrando la (7.2) si ottiene
1 T 1
=575, (z2— 11 2-2n fn-1 = fns
ovvero la formula iterativa
(7.3) I 1 T 3—2n I

Esercizio 7.33. Trovare la formula iterativa per

dx
Jn=[ 55—,
/(:L'2+1)”

pern € N.

B Soluzione. Si ha

per n=0 Jo—/dx—x—i-c , ceR

d
per n=1 | le/xzilzarctanx%—c, ceR.

Sia n > 2 e decomponiamo
1 142 —a? 1 x?

2+ 1" @2+ (22Dl (2241
x2 1 2x
— " dr=Z | —= sdr=
/(:c2+1)n v 2/(x2+1)nx v

1 2 1 —n+1 1
_ - (l’ + ) T — /(ZE2 + 1)—n+1 dr | =
per parti 2 1—n 1—n

1 T 1
C2-=2n (2241t 2-2n

(7.4)

dove

Jn—1 .
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Allora integrando la (7.4) si ottiene

1 T 1

Jp = Jp_q — e
T @il 2o

ovvero la formula iterativa

3—2 1
(7.5) A — ’

S - .
2—2n """ 2-2n (224 1)1

Esercizio 7.34. Sia a € R. Trovare la formula iterativa per

dx dx
Ian = ) Jan = .
’ / (22 — a?)" ’ / (2% 4 a®)"

B Soluzione per I, ,,.

per n=0 , l,o= [de=x+c , ceR
dx 1 r—a

=1 Ij1= ] ——=—1 , R

per n , 1 /x2—a2 %0 0g Tt a +c, ce
SianZQ,postotzzsiha
a
1 d 1 1
[a’":aTn a:f - (thl)” dt:a2n—1 I
G-
a

Applicando allora la formula iterativa (7.3) si ottiene

1 1 t —2
Ia,n - < ’ n In—l)

a2-1\2—-2n (Z—1)1 2-2n
1
ovvero, essendo I, ,_1 = 2—3]n_1, a conti fatti, si ha la formula iterativa
a“""
(7.6) I ! - (3—2n)1
. an — - — N )lgn— .
’ (2 —2n)a? | (2?2 —a?)"! et

Soluzione per Jg .
per n=0 Jmoz/d:ﬁ:x—i—c , c€R

dx 1 x
per n=1 Jal—/———arctan——l—c, ceR.
’ »2?+a® a a

x
Sia n > 2, posto t = — si ha
a

1 dx 1 a 1
Jan o2n [ N2 m T en /(t2+1)n q2n—1 In
( ) 41
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Applicando allora la formula iterativa (7.5) si ottiene

1 3—2n 1 t

Jan - Jn— -

" gl (2 —on " 2—2n (24 1)n—1>

1
a2n—3

1 T

— B3 -2n)Jyppe1 — ——— | .
(2 —2n)a? {( ") Jans (22 4+ a2)”—1}

ovvero, essendo J, 1 = Jn_1, a conti fatti, si ha la formula iterativa

(7.7) Jan =

Esercizio 7.35. Siano a,b,c € R. Trovare la formula iterativa per

dx
K, = .
/ (azx? + bx + )

B Soluzione. Sia t = 2ax + b, allora
L b\° b — dac
€T —_— —_— =
2a 4a?

= %[(2@@ +0)* — A] = %(ﬂ —A).

Pertanto integrando per sostituzione si ha:

b
ax2+bx+c:a(x2+—x+f) =a
a a

dt
Kn — 22n—1 n—l/ )
© ) EA
Se A > 0, posto A = A? si ottiene

1

_ 0o2n—1_n—1 _
Kn =2 a IA,n — IA,n = —22n—1an—1

n

che dalla (7.6) da

22n—1an—1 ¢
B = (2 —2n)A? {(ﬁ — A2)n-1 - (- 2”)L4,n—1:| =
B 22n—1an—1 2@1’ + b - 3 B 2n
(2-2n)A |[(2ax + D)2 — A1 22n-3gn—2 n—1

ovvero, essendo (2ax + b)? — A = 4a(ax?® + bz + ¢), si ha la formula iterativa
1 2ax + b
7.8 K, =
(78) (1—-n)A [(amz + bz + )1

Se invece A < 0, posto A = —A? si ottiene

— 2a(3 — 2n) Kn_l} .

1

_ 0o2n—1_n-—1 o
Kn =2 a JA,n — JA,n = —22n71an71 n

che dalla (7.7) da

221171 a~ 1

t
K,=———|(3- L
"= Qo)A [(3 2n) Jam-1 = G A?)n—l]
22n—lgn—1 3—2n oo 2ax + b
(2 —2n)A " [(2ax + b)? — AP

22n—3 an—2
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ovvero (essendo sempre (2ax + b)* — A = 4a(az® + bz + ¢)), si ha la formula iterativa
1 2ax + b
(1—=n)A | (az?+ bz + c)"!

Si osservi che la (7.8) e la (7.9) sono la stessa formula.

(7.9) K, = —2a(3 — 2n) Kn1] :

Esercizio 7.36. Calcolare 1 sequenti integrali
x? r+1
1 ——d 2 ———dx .
W [ Fogmd @ [ g
Esercizio 7.37. Calcolare

dx x?
O e @ [

Esercizio 7.38. Calcolare

(1) /xQ(x2—3)3/2dx | (2)/ LA

Esercizio 7.39. Calcolare i sequenti integrali:

O [Grmme @ [ Grmeme
(3) /x3(3a:2+5)5/2 dr .
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8. ESERCIZI SUGLI INTEGRALI GENERALIZZATI

Esercizio 8.1. Verificare l’eventuale convergenza dei sequenti integrali generalizzati:

+00 +00 :
(1) / dx (@ / sinx dr
5 xlogzw 1 z(a® —logx)

B Soluzione di (1). Si ha

) 1 +o00 se a>1
lim z“ =
z—+oo  zlogw 0 se 0<a<1,
+oo
quindi il criterio per la convergenza degli integrali impropri del tipo f(x) dx ¢ inef-

ficace. Usando allora la definizione di questo integrale generalizzato S ha

too g by b1
/ Y — lim Y — lim /% dr =
3 xlogr b+ J3 wlogxr  bo+oeo J3 logax

b
= lim log|log x|’ = lim (loglogb — loglog3) = 400
b—+o00 3 botoo
quindi 'integrale diverge.
Soluzione di (2). Si ha
lim — " = lim T~
o—too (23 — logz)  w—too ( logx)
(11— ——
x
per cui la funzione integranda ¢ infinitesima per x — +oco. Inoltre
) r¥sinx _ r*sinx
lim ———— = lim =0
e—too (23 —logzr) eotoo (1 logm)
x —
x

se 0 < a < 4: in particolare questo vale per « = 3 > 1 e, dal criterio della convergenza
+oo

per gli integrali del tipo (x) dx, 'integrale dato converge.
[ |

Esercizio 8.2. Verificare la convergenza dei sequenti integrali ed eventualmente calcolarli:

(1) /;Oo(x‘f—‘”m (@) /1+wx4L+1dx.

Esercizio 8.3. Verificare la convergenza di
to x+5 “lsina
1 —d 2 dz .
( ) /—oo (CL’2 + 3)2 v ( ) /—oo x !

B Soluzione di (2). Poiché la funzione sinz ¢ limitata (pur non avendo limite per = —
—00), si ha

. sinx
lim =0
T——00 T
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lim |z sinz . 2o sinz
T—>—00 €T r——00 |§L‘|

non esiste se a>1

T—r—00

= — lim |z|* 'sinz =
0 se 0<a<l.

a
Quindi il criterio per la convergenza degli integrali impropri del tipo / f(z)dz & inef-
—0o0

—1 —1
COST
— dr =
fEQ
b —00

b —1 —1
=cosl+ lim ﬁ—/ Cosxdx:cosl—/ cosxdx'

ficace. Integrando per parti si ottiene:

. “lsing . cos X
lim dr= lim —
b——o00 b i b——o0 xT

b——oco b o X2 o T2
Ora CoS T
lim |z|* —~ = lim |2|*?cosz =0
T—r—00 €T T—r—00

se  —2 < 0, i.e. per a < 2. Scelto allora un qualsiasi valore 1 < a < 2 (ad esempio

3
a = —), dal criterio per la convergenza degli integrali impropri del tipo / f(z)dz,

2
L cosz
5 dx
o0 X

I'integrale
converge e quindi converge anche l'integrale improprio dato.

—00

Esercizio 8.4. Verificare la convergenza di
+o0 +o0 dzr

(1) Vv sing?dr (2)/1 — , a€eR.

1 e
Esercizio 8.5. Verificare la convergenza di

400 dr +o0 r+1
1 —_ 2 ————dz.
W[ e @ g
B Soluzione di (1). Si ha

lim z% — = lim —————
z—+oo  x?logxr  w—too 2 %logw

1 i 1 0 se 0<a<2
+00 se a > 2.

Scelto ad esempio @ = 2 > 1, dal criterio per la convergenza degli integrali del tipo
“+o0o

f(z) dz, 'integrale dato converge.

Esercizio 8.6. Verificare la convergenza degli integrali impropri:

Foo dx Feo dx
W [ a0 @ ] warow
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Esercizio 8.7. Verificare ’eventuale convergenza degli integrali impropri:

! 2 — 1 ! dz
1 —d 2 _ .
W [ ot @ [ o
Esercizio 8.8. Quali dei sequenti integrali diverge?

toeo r—3 ! 2—1/3
B Soluzione di (1). Si ha

3
r|l1l——
. r—3 . T
lim ——— = lim =0
a—too 23 —logr 2ot 4 log =
z° | 1—
23

quindi la funzione integranda e infinitesima per x — +oco e inoltre

se « +1 = 3 ovvero per a« = 2 > 1. L’integrale converge dal criterio per la convergenza
+oo
degli integrali impropri del tipo f(x)dx.

a

1
Soluzione di (2). Scritto z~/3 = — abbiamo

Jr
lim (—1 + ew_l/?)) = lim <61/% — 1) =

T—r—00 T—r—00

lim (e = 1) =0
y7# y—>0*

x

1/3

per cui la funzione integranda —1 +e* ' ¢ infinitesima per z — —o0; inoltre

lim |z|® (efl/?’ - 1> = lim |z|* <61/i”/5 - 1) =

T——00 T——00
Coev—1 Coev—1
= hm T30 = hm NN = —1
y== vo0m [P w0y

se 3a = 1, ovvero la funzione integranda e infinitesima di ordine @« = - < 1 e questo

non permetterebbe di concludere sul comportamento dell’integrale generalizzato dato.

1
Tuttavia, per x < 0, e ? < 0, percid e/ V% < 1. Dunque la funzione integranda ¢ una
x
funzione infinitesima per + — —oo di ordine < 1 di segno costante (negativo) e pertanto
I'integrale diverge.

Esercizio 8.9. Calcolare i sequenti integrali impropri

(1) /:Oo @ L enoy . (2) /0 3Tl

xlog"x o T3+ 4
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Esercizio 8.10. Calcolare i sequenti integrali

T dx T Jogx
(1) / 1 , (2) / 5 dx

0 zt+1 0 x4+ 3
too da
0 vV 1—at '
B Soluzione di (2). L’integrale & generalizzato sia perché l'intervallo di integrazione e
superiormente illimitato sia perché la funzione integranda ¢ un infinito per x — 0%.
Tuttavia e facile provare che la funzione integranda, per x — -+oo, ¢ infinitesima di

ordine superiore ad ogni «, 1 < o < 2, mentre per x — 07 ¢ un infinito di ordine inferiore
ad ogni o, 0 < a < 1. Quindi l'integrale converge e avremo

/+°° log © dle/%o log © i — £/+°°10g\/§tdt:
0 0 t=75 3 0

(3)

x2 + 3 3 x? 2 4+1
—+1
3
teo] T Jogt
_ V3 / 0gV3 08t gt =
3 0 2+1 0 2+1
oo dt \/_ oo logt
= —1
05 V3 / 241 1
Si ha
e dt " at , b -
——— = lim ——— = lim arctant| = lim arctanb= — .
0 t2+1 b—+oo Jo t24+1 b—+o00 0 b—+o0 2

Per calcolare il secondo integrale poniamo dapprima s = arctant da cui ¢ = tan s e quindi
dt = (1 + tan?s) ds. Allora

0 ogt 2 logt 2
/ o8 dt:/ w(l—l—tanzs)ds:/ log tan s ds =
0 0

t2+1 tan®s + 1 0
2 2
:/ log sin s ds —/ log cos s ds .
0 0
m . m . .
Ora, posto u = 5 — 5 s ha ds = —du e cos s = COS(§ —u) = sinwu, da cui

3

bl 0 bl
/ log cos sds = —/ log sinu du = / log sin u du .
0 T 0

2

Sostituendo si ottiene:

T logt B 5
/ 08 dt:/Qlogsinsals—/2 logsinsds =0 .
o t*+1 0 0

T Jogx V3
dr = —— 1 3.
/o x2+3 ‘ 6 0g V3

In conclusione
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Esercizio 8.11. Verificare l’eventuale convergenza dei sequenti integrali generalizzati:

+oo +oo
(1)/ sinz?dr (2)/ cos 2 dx .

—00 o0

B Soluzione di (1). Si ha

+oo 0 +o0o +oo
/ sinz?dx = / sin 2% dx + / sinz?dr = 2 / sin x%dx
—00 —00 0 0

perché in ogni caso x? € [0, +00). Ora

1 sint
sinz?dr = —/— dt
/ 2 Vit

avendo considerato la sostituzione z2 = ¢, quindi

oo 1 Lsint oo gint
/ Sinxde:—( ﬂdt—i—/ gdt).
0 2\Jo vVt R

Siccome

I'integrale generalizzato

converge. Si ha poi

/*msint g — lim bsint gt — Tim _costb_l /bcost a ) —
1 Vit b=too J1 T b—+00 L2 ) B2

1 cos b ] 1 b cost gt
= im (77 tesl=5 | T

dove , .
. cosb i cost > cost
blgl—noo bl/2 =0 e blgi-noo 1 t3/2 d _/ t3/2 d
Poiché
cost 1
t3/2 | = 132

L. o . . o ).
con ——- integrabile in senso generalizzato in [1,400), si ottiene che 'integrale

t3/
—+o00
cost
/ o
1 t

converge. Pertanto, poiché

0 sint gt ’ cosb +osl 1 [T cost gt 1 1 [T cost gt
—dt=— lim —% +cosl— = — dt =cosl— — —
1 \/E b—+o00 b1/2 2 1 t3/2 2 1 t3/2 ’
, T sint , ,
I'integrale —— dt converge. In conclusione l'integrale (1) converge.

Ve

Soluzione di (2). Si risolve come (1) appena svolto.
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Esercizio 8.12. Sia a > 0. Determinare per quali valori di u,v > 0 convergono gli
integralt generalizzati

+00 +oo
(1) / x'sinz’dx ,  (2) / " cosx’ dx .
a a

B Soluzione di (1). La funzione integranda f(x) = z*sin 2" non ha singolarita in [a, +00)
per a > 0. Integrando per parti si ottiene
b ou—v+1 [Pcosa?
+ dr| =
a

V b—+oo VU

+o0 1
rUsinz’dr = —= lim |(2“"™ cosa?)
a a () -

1 .. u—v+1 b cos x?
=—= lim (b“‘”“ cosb’ — a* Tl eosa’ + / da:)
U a

dove
non esiste se u—v+1>0

b——+o00

lim “ ! cosh?
=0 se u—v+1<0

Resta percio soltanto il caso u — v+ 1 < 0 i.e. v —u > 1. Inoltre

) b cos v T cog ¥
lim dr = dx
a

b=+oo f, VY HAN
dove
cos ¥ 1
< , v—u>1.
VU |x‘v—u

Quindi I'integrale generalizzato

T cog ¥
— dx
" z

converge. Ne segue che, per u —v +1 <0,

+oo 1 u—v+1 +oo v
. . - a u—v+1 COS &
2¥sinz’ der = —= lim b *Tlcosh® + cosa’ — — dz =
a V b—=4o0 v v " ry—u
qumvtt , u—v+1 [t cosaV
= cosa’ — ——— dx
v v a v

per cui in conclusione se u, v > 0 allora l'integrale generalizzato (1) converge per v—u > 1.

Soluzione di (2). Si precede esattamente come per la soluzione di (1) appena svolta.
|

Esercizio 8.13. Studiare la convergenza dell’integrale

/+oo dx
o ar’+br+c

al variare di a,b,c € R.
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Esercizio 8.14. Sia a > 0. Studiare la convergenza dell’integrale
+oo
/ 2™ sin" x dx

al variare di m,n € N.

Esercizio 8.15. Calcolare i sequenti integrali:

(1) /12\/4‘%7 C(© /_ilog(Q—asz)dm.

Soluzione di (2). La funzione integranda & definita per x € (—3,3), inoltre per tali valori
dize3—x>0,3+z>0,equindi log(9 — z?) = log(3 — z) + log(3 + x). Dunque

/log(9 —2%)dr = /log(B —z)dr + /log(?) +z)dr =
=B —2)[1—-log(3—2)]+ B +a)log(3+2z)-1]+C

perché
/10g(3 —x)dx

/log(B—i—w)d:U t_:+3/10gtdt:tlogt—t+C: 3+ z)log3+2)—1]+C .

—/logtdt:t—tlogt—i—C: (B—xz)[1—log(3—a)]+C,

t:3_—x

Allora, poiché lim log(9 — 2%) = —oo = lim log(9 — x?) si ha
r—3~ r——3+

3 0 3
/ log(9 — 2?) dw = / log(9 — 2%) dx + / log(9 — 2?) dx
0

-3 -3

dove o .
/ log(9 — 2%) dx = EI_I}H log(9 — 2°) dx =
= a£g+ {3(1 —log3) 4+ 3(log3 —1) — (3 —a)[1 — log(3 — a)]—
—(3+4a)log(3+a) — 1]} =
=— aEEI:IB-F {B—=a)[l —log(3 —a)] + (3 +a)[log(3+a)—1]} =
=6(log6 — 1) — a£2+(3 +a)[log(3+a) — 1] =6(log6 — 1) ,
/3 log(9 — 2?) dx = lirgl_ ’ log(9 — 2?) dw =
= aliglﬁ {3—a)[1 —log(3 —a)]+ (3+a)log(3 +a) — 1]—
—3(1 —log3) —3(log3 —1)} =
= aligl_(?) —a)[l —log(3 —a)] + 6(log6 — 1) = 6(log6 — 1) .
Pertanto

3
/ log(9 — 2%) dx = 12(log6 — 1) .

-3
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Esercizio 8.16. Calcolare gli integrali

w[E e

1 X

N

dz
zlogz

Esercizio 8.17. Calcolare gli integrali

1 Lo __ —
(1)/ 1+ cosz i (2) / 2 —2cosw \/de.
0 0

(1 —a3)4/3 x

Esercizio 8.18. Calcolare
2 dx ?log(2 — )
1 _ 2 — 2 dx .
o [ et @[ G

Esercizio 8.19. Divergono i sequenti integrali?

(1) /02 (g /Oéd—x,nEN\{O}.

x3sinx xlog" x

Esercizio 8.20. Quali dei sequenti integrali converge?

L dx 4x+1
1 2 —dx .
<>!A L @ A Ll

Esercizio 8.21. Verificare [’eventuale convergenza di

" dx 3" dz
1 —_— 2 _— .
(1) /o 1—cos?2x 2) /0 1+ 2cosx

Esercizio 8.22. Verificare la convergenza di

! T+ 2 L de
(1) /_3 (22 — 22+ 1)(z + 3)%/3 de, (2) /0 V1—a2t

Esercizio 8.23. Sia a > 0. Studiare la convergenza dell’integrale
“+o0o
MNa) = / v e d .
0

La funzione I'(«), « > 0, sopra definita si chiama integrale di Eulero di seconda specie
(o funzione Gamma di Eulero o anche Gamma euleriana).

Esercizio 8.24. Dimostrare che
(i) I1)=1,
(ii) N(a+1)=al(a), e di consequenza
(iii) I'(n+ 1) =n! per ogni n € N\ {0}.

Esercizio 8.25. Calcolare 1 sequenti integrali

+oo +oo
(1) / e dr , (2) / 2°%e % dx .
0 0
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Esercizio 8.26. Calcolare i sequenti integrali

2 dx 2 dx
(1) /1 (x+1)log(z +1) (2) /2 (z —2)log*(x — 2)

P2+l oor+1

3 ——d 4 dz |

(3) /2 P32 +4 ) /0 (r+2)Vr—1 !
209 o _ 0

(5) /de ’ (6)/ x—Hdm’
1

2+ x -2 _vz (22 —2)?
o0 du 0 1 — 42
7 8 d
(7) /1 (22 + 42 +5)3 (8) /_Oox3—5x2+3x+9 T

3 s
ey .
(9) /2 ST e (10) /QLda:,
0

x T —T 1 —cosz

2

1 2 —_ 400 .2
(11) / Wi el B (12)/ vl

-3

x+3 zt+1

—00
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9. ESERCIZI SULLE EQUAZIONI DIFFERENZIALI DEL I ORDINE

Premettiamo una breve ricapitolazione per la risoluzione di alcuni tipi di equazioni
differenziali del I ordine.

¢ Equazione differenziale ordinaria:
y(z) = flz),

con f € C'(A), A C R un intervallo. Per ogni fissato o € A, la soluzione &

) = ylao) + [ (0t
Zo
e Equazione differenziale ordinaria a variabili separabili (o separate):

Y (z) = a(z)b(y(x)) ,

con a € C°(A), b € C°(B) per A, B C R intervalli.
Se 'equazione numerica b(y) = 0 ha una soluzione y, allora la funzione costante

y(z) = o

e soluzione dell’equazione differenziale.
Se b(y) non ¢ identicamente nulla allora, per ogni fissato zq € A, le soluzioni y(z) si

ricavano da
/y(r) 1 x ( )
— dt = / a(s)ds .
y(zo) b(t) o

¢ Equazione differenziale lineare omogenea del I ordine:
Y (2) +alz)y(z) =0,
per a € C°(A), A C R un intervallo. Per ogni fissato zy € A, le soluzioni sono

y(x) = y(xo) e Fro 2%

¢ Equazione differenziale lineare affine del I ordine:
y' () + a(x)y(z) = bz) ,

per a,b € C°(A), A C R un intervallo. Per ogni fissato x5 € A, le soluzioni sono
y(ZE) = y(xo) e~ fzzo a(s)ds +/ b(t) ef; a(s)ds dt
Zo

¢ Equazione differenziale di Bernoulli:

y'(x) + a(@)y(z) = b(a)y"(z) ,
per a,b € C°(A), A C R un intervallo. Per ogni fissato x5 € A, le soluzioni sono

. . 1/(1-n)
y(l’) _ ylfn(x()) 6(71—1) sz a(s)ds + (1 . n) / b(t) e(lfn) frt a(s)ds dt

o

¢ Equazione differenziale di Riccati:

Y (z) + a(z)y(z) = bz)y*(z) + c(2) ,
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per a,b,c € C°(A), A C R un intervallo. Determinata una soluzione particolare §(x) si
pone z(x) = y(x) — y(z) e sostituendo nell’equazione differenziale y(x) = z(z) + g(z), si
ottiene ’equazione differenziale di Bernoulli con n = 2,

Z() + lalx) — 2b(@)j()]=(x) = b(z)2X(x)

la quale risolta, permette di determinare y(z) = z(z) + y(z).

o o . by +
e Equazioni differenziali del tipo 3/ = f< am:by +C );
a1x 1Y C1

con a,b,c,ay,b;,c1 €ER, ayx +by+c1 #0, f € ?(A), ACR un intervallo.

a
Caso (1). det [ ) ] # 0. Si considera il sistema lineare
ap 01

X=ar+by+c
Y =ax+by+cy

da cui, risolvendo, si ottiene

y:A1X+B1Y+Cl

con A, B,C,A;,B,C; e ReY =Y(X). Allora
dx _ / dy o / ’r_
dX—A+BY ,dX—AﬁJM/, Y' = :
L’equazione differenziale data diventa
Al—FBlY, - f<X>
A+BY ’\Y

{x:AX+BY+C

che generalmente si risolve ponendo 1" = <

a b
Caso (2). det [ ) ] = 0. Siponet = ax+ by, t = t(x), ottenendo l'equazione
ar 0

i)

e Equazione differenziale di Clairaut:

y(x) = 2y'(z) + g(y'(z)) ,
per g € C*(B), B C R un intervallo. Per derivazione si ottiene

Y'(@) [z +4'(y(@)] =0.
Ogni funzione y(z) = ax+0b ¢ soluzione. Per ¢t = ¥ si ha la soluzione in forma parametrica

differenziale

z=—g'(t)
y=—tg(t)+g(t).
¢ Equazione differenziale di D’Alembert-Lagrange:

y(x) =z f(y'(x) + 9y () ,
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per f,g € C'(B), B C Run intervallo, f e g non contemporaneamente costanti. Derivando
rispetto a x e posto t = ¥/, si ottiene, per™ xf'(t) + ¢'(t) # 0,
r_ t— f(t>
270 + 9/ D)

Se t' = 0 allora le funzioni y(x) = az + b sono soluzioni. Se ¢’ # 0, dove ¢ ¢ invertibile si

1
ha t' = m da cui 'equazione differenziale affine del primo ordine
x
f') g'(t)
2 (t) + z(t) =
RO [0

che permette di determinare x in funzione del parametro ¢t e dunque dall’equazione dif-
ferenziale iniziale, si ha la soluzione parametrica

x = xz(t)
{ — a()f(t) + g(1)
¢ Equazione differenziale di Manfredi:
y'(x) = e(z, y(z))
con ¢ : R? = R ¢ una funzione di due variabili reali, continua e omogenea di grado 0.
Ponendo t = % e differenziando rispetto a x si ottiene ¢y = ¢ + xt’ da cui xt' = f(t) — ¢

che da I’equazione differenziale a variabili separabili

oy — L) — )

x
la cui soluzione t(x) permette di ricavare y(z) = zt(x).

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI DEL I ORDINE
Esercizio 9.1. Risolvere le equazioni differenziali ordinarie

(1) Y =32> -5z +10 , (2) 3 =tanz+1x.

Esercizio 9.2. Risolvere le equazioni differenziali a variabili separabili
1) =4 —y+7 , (2) ¥V =V20P+2+V2.
Esercizio 9.3. Risolvere le equazioni differenziali a variabili separabili
1) y=0By—-22" , (2) @+1y=@@-DH*+y+1).
Esercizio 9.4. Risolvere le equazioni differenziali a variabili separabili
(1) 22 =24+ 1)y = @@*+22 - 1)(* - 1),

(2) (2 +22 -1y =@ —z+ D) +1).

HSe 2f/(t) + ¢'(t) = 0 allora 'equazione differenziale & di Clairaut.
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Esercizio 9.5. Risolvere le equazioni differenziali

1 .
(1) y’—i—;y:() , (2) ¥y =sinz cosy,

1
(3) v = ij , (4) ¥y +2zy=0 , (5) y = 2%y .

Esercizio 9.6. Risovere le sequenti equazioni differenziali lineari affini:

1
(1) y,_my—x:() , (2) v —ytanz =sinz cos’z .

Esercizio 9.7. Risolvere le equazioni differenziali lineari affini:

3
(1) ¥/ +2zy =2 |, (1) y’+(x2—|—:1:)y:(x2+x)(a:3+§x2+1).

Esercizio 9.8. Risolvere le sequenti equazioni differenziali

6x 1

1 ! =
()y+3$2_1y —1+ 322

, (2) ¥ —ysinz =sinz .

Esercizio 9.9. Risolvere le sequenti equazioni differenzaili del I ordine:

(1) yy +22°=0 , (2) v’y +2° =0,

Esercizio 9.10. Risolvere le equazioni differenziali del I ordine:

2 x 3,

xr-e xIr-e
2) zy = .
i (2) oy =y+ 1

(1) oy = —y+

Esercizio 9.11. Risolvere le equazioni differenziali del I ordine

—r+y—1 r—y+1 Y\
Wy=-"" @y = ()
r+y—1 20 -2y +1
B Soluzione di (1). Posto
X=—-z+y+1
Y=24+y—-1
il determinante del sistema &
-1 1 2240
X —
da cul si ricava
1 1 dx 1 1
r=—=X+=Y 4y’
2”2 X 2713
1 1 d 1 1
y=-X+:Y+1 =y
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dY
dove V' = X Poiché

dy
f_dX _ Y'+1
de Y -1
dx
I’'equazione differenziale (1) diventa
Y'+1 X — Y,:X+Y
Y'—-1 Y X-Y°

Y
Posto T' = % siricava Y’ = XT' + T da cui

1+T 1 7% +1
XT' =T+ = T =— .
* 1-T X 1-T
1 T°+1 . . : . -
Posto A(X) = ¥ © B(T) = T S ha I'equazione differenziale a variabili sepa-

rabili 7" = A(X)B(T') ovvero

—T/(X) = a cui X—T/(S) = .
By — A we [ garsas= [ as)as

per Xo = —xg + y(xo) + 1. Poiché dT' = T'(S)dS si ha

TX) g7 X
- = A(S)dS
/T(X()) @ /X (5)

T(X) AT T(X) 1—-T T(X) AT T(X) T
[ [ e [ o [
rxo) BT)  Jrox 1+T rxo) VHT? Jrexg) 1+ T

= arctan T'(X) — % log (1 + T(X)2) — [arctan T(Xo) — % log (1 + T(XO)Q)] ,

dove

X X]_
/A(S)dS: L 48 = 1og [X| — log | X| .

Xo Xo S

1
Pertanto se Cf = arctan T'(Xy) — 5 log (14 T(Xp)?) — log | Xo| allora si ha

1
arctan T'(X) — 5 log (14 T(X)?) =log|X|+ C}

da cui 2oy
1 +
arctani b logT =log|X|+Cy =

Y
S arctany —log VX2 +Y?2+log|X|=log|X|+ C

Y (X
con costante Cy = arctan FX o) _ log 1/ X2 + Y (Xy)?. La soluzione dell’equazione dif-

0
ferenziale e allora espressa in forma implicita da

+y—1
—r+y+1

arctan —log /222 + 22 — 4z +24+C =0
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per C' € R costante dipendente dalle condizioni iniziali g, y(zo).

Esercizio 9.12. Risolvere le sequenti equazioni differenziali del I ordine:
3+ 2y —1 r—y+3
LVy=——-—7 ., @QvV=5g—"7
—r+2y—3 20 — 2y +1

Esercizio 9.13. Risolvere le equazioni differenziali

(1) 2/ =2>+y , (2) 2%/ =2 —ay+9°.

Esercizio 9.14. Risolvere

1) y+ay=2 , 2) 2y =Uy—2)’+y.

Esercizio 9.15. Risolvere le sequenti equazioni differenziali

Y 2 T
(1) y/+P:ﬁ , (2) y’+x+1y:x2—1,
(3) v+ i y=3r"+x+1 (4) y’—Ly:x
2 +1 ’ 1—x ’

(5) v —y tanx = sinz cos’x .

125
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10. ESERCIZI SULLE EQUAZIONI DIFFERENZIALI A COEFFICIENTI COSTANTI DI
ORDINE n > 2

Premettiamo anche qui una breve ricapitolazione per la risoluzione dell’equazioni dif-
ferenziali del tipo

(10.1) Y™ 4 any" T 4 ary + agy = b(x)
a; € R, 0<j<n-—1. Sia S lo spazio delle soluzioni dell’equazione differenziale (10.1) e
yo(x) una soluzione particolare di (10.1); considerato il polinomio caratteristico di grado
n
PA) = A"+ ap AN Fag

associato all’equazione differenziale lineare omogenea

Y a1y ety +ay =0,
se

e p(\) ha n radici reali e distinte Ay, - - - A, allora
S= {?JGC"(A)i?JZyoJrZCjeW, ¢j € R, 1§j§n} :
j=1

e p(\) ha radici reali distinte Ay, -+, A\, k¥ < n, ma una di esse ha molteplicita, ad
esempio A\ ha molteplicita my (2 < my < n), allora

mk—l

k
S = {y e C"(A) 1y =1yo —FE:cj»e’\jaC + Z Crn T N
j=1 h=1

ci,cen €ER, 1 <5<k, 1§h§mk—1}.

e p(\) ha una radice complessa semplice, ad esempio A\, = «, + if3,, allora

n—1
S = {y ceC"(A):y=yo+ ch €N 4 ¢y, €977 COS By T 4 Con €47T sin B

J=1

Cj,Cln,CQnGR,lﬁjﬁn—l}-

e p(\) ha una radice complessa con molteplicita, ad esemio A\, = ay + i con
molteplicita my, allora,
k—1
S = {y eC™(A):y= yo+cheij+

j=1

mp—1

+ (clkh z e cos Be 4 Copn @’ €+ sin Bka:) ,
h=0

Cj, Cikn, Cokn € R, 1 <7 <k —1, 1§h§mk—1}-
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Una soluzione particolare yo(x) per I'equazione differenziale (10.1) si puo determinare nei
modi seguenti'?.

(1) II dato b(x) ¢ un polinomio di grado r
e se ag # 0 allora ricerchiamo

yo(x) = bpx” + bp_yz" o £ bz + b ;
eseaqp=a;=":-=a,_1 =0 ea, # 0 allora ricerchiamo
yo(z) = 2™ (bya” + by_12" 1+ byw + by) .

(2) 1 dato b(z) ¢ multiplo della funzione f(x) = e** per k € R
e k non ¢ radice del polinomio caratteristico p(A) allora ricerchiamo

yo(z) = cet

e /e radice di p(\) con molteplicita m > 1 allora ricerchiamo

yo(z) = ca™er”

(3) 11 dato b(z) ¢ il prodotto di un polinomio di grado r e di e**
e L non ¢ radice del polinomio caratteristico, allora ricerchiamo

yo(x) = elm(bo +bx+ -+ ba’);

e k e radice del polinomio caratteristico con molteplicita m > 1, allora ricer-
chiamo

yo(z) = 2™ (by + by + -+ + by’ .

(4) Tl dato b(x) & una combinazione lineare delle funzioni f(z) = cos kz e g(z) = sin kz,
per k€ R
e ik non e radice del polinomio caratteristico allora ricerchiamo

yo(x) = avcoskx + Bsinkx .
(5) I dato b(x) non rientra nei casi precedenti
e si usa il metodo della variazione delle costanti. Si determinano n soluzioni

linearmente indipendenti uy, - - - ,u, dell’equazione differenziale omogenea e
scritta la sua generica soluzione u(z) = 3 5, cju;(x), per ¢; € R, ricerchiamo

Yo(x) = Z cj(@)u;(x)

12Usando il principio di identita dei polinomi o I'indipendenza lineare delle funzioni una volta sostituito
Yo e le sue derivate in (10.1).
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dove le funzioni incognite ¢;(z), 1 < j < n, si determinano risolvendo il
sistema di equazioni differenziali del I ordine

( N

> d@)u(x) =0

=1

( Jj=1

Esercizio 10.1. Risolvere le sequenti equazioni differenziali omogenee del secondo ordine
a coefficienti costanti

(1) " +y=0 , (2) ¢y =2y —3y=0.

B Soluzione di (1). Il polinomio caratteristico & p(A) = A* + 1 che ha le due radici
complesse e coniugate \; = i, A\; = —i. Pertanto le soluzioni della 1) sono le funzioni
y € C(R) date da

y(xr) =cicosx + cysinx , ¢,c0 €R.

A
Soluzione di (2). 1l polinomio caratteristico & p(A) = A\? — 2\ — 3, dove 1o 4, quindi
le sue radici sono \; = —1, Ay = 3. I generatori delle soluzioni dell’equazione differenziale
2) sono cosi le funzioni u;(z) = ™%, uy(x) = 3%, per cui tali soluzioni sono le funzioni
y € C=(R)
y(r) = cre” + €3 |, €R.

Esercizio 10.2. Risolvere le sequenti equazioni differenziali omogenee del III ordine a
coefficienti costanti

(1) y///+2y/+3y:O ’ (2) y/l/_2y//_y/+2y:() .

B Soluzione di (1). 1l polinomio caratteristico ¢ p(A) = A* + 2\ + 3. Osserviamo che
p(—=1) = 0, dunque A\; = —1 ¢ una radice (reale) di p(A). Per determinare le altre
radici operiamo la divisione tra p(A) e il monomio A + 1 ottenendo cosi A + 2\ + 3 =
(A +1)(A* = X+ 3) dove, per il trinomio di IT grado, ¢ A = —11. Ne segue che p(\) ha le
due radici complesse e coniugate

1 Vil 5 1 V11

Ao = — S - — _
2= 5 +1 5 ) 2= 5 { 5
I generatori delle soluzioni sono dunque
V11 V11
u(xr) =e® | uy(z) = e?cos r , us(z)=e?sin—z

2
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per cui le generiche soluzioni dell’equazione differenziale 1) sono le funzioni y € C*(R)

vatl il

y(r) =cre® +co ™2 cos Tm+03 e”/? sin Tm , C1,C0,c3 ER.

Esercizio 10.3. Risolvere le sequenti equazioni differenziali omogenee del V ordine a
coefficienti costanti

(1) y® —5y@ — 9y + 45y =0 , (2) y® —5yD 47" — 3y’ =0.

B Soluzione di (1). Il polinomio caratteristico & p(A) = A — 5X* — 9\ + 45 che si
decompone in p(A) = (A — 5)(\* —9). Le sue radici sono \; = 5, Ay = v/3, \3 =
—\/g, A= V3 1, A5 = —V/3i = )\_4, tutte semplici. Pertanto le soluzioni dell’equazione
differenziale omogenea proposta sono

y(r) = e’ + 026‘/59” + 636_*/§x + ¢4 COS V3z + 5 sin V3z , eR 1<i<5.

Soluzione di (2). Il polinomio caratteristico ¢ p(A) = A% — 5 A1 + 7A3 — 302 = \2(\3 —
5A% + 7X — 3). Allora A\; = 0 ¢ radice di molteplicita 2 e si trova anche la radice Ay = 1.
Dividendo per A — 1 si ricava p(A) = A?(A — 1)(A\* — 4\ + 3). Si determinano cosi altre
due radici che sono A3 = 3 ed ancora As = 1 per cui quest’ultima ha molteplicita 2.

Le soluzioni dell’equazione differenziale omogenea (2) sono dunque

y(x) =c1 4+ cor + c3e” +egre” + e, G ER,1<i<5.
[ |
Esercizio 10.4. Risolvere le sequenti equazioni differenziali omogenee di ordine superiore
al primo

(1) ¥ +3yW +3y" +y=0 , (2) v -8y +25/ —26y=0.

B Soluzione di (1). 1l polinomio caratteristico & p(A) = A® + 3A* + 3)\% + 1 ovvero
p(A) = (A2+1)3, quindi ha due radici complesse coniugate A\; = i, \y = \; = —1, ciascuna
di molteplicita m = 3. Pertanto la generica soluzione dell’equazione differenziale (1) ¢

y(x) = ¢y cos T+ cy sin 2+ 31 cos x4+ cux sin 2+ c52° cos v+’ sinw c; €ER, 1<5<6.
Soluzione di (2). Il polinomio caratteristico & p(A) = A3 — 8\% 4+ 25\ — 26 e p(2) = 0

percio si ha la radice reale A\; = 2. Per le altre radici operiamo la divisione tra p(\) e il
monomio A — 2 ottenendo A\* — 8\* 4+ 25\ — 26 = (A —2)(A\? — 6\ + 13), dove il trinomio di

A
IT grado ha il —4, per cui il polinomio caratteristico ha anche le due radici complesse
e coniugate Ay = 2i, A3 = —2i. La generica soluzione dell’equazione differenziale (2) e
dunque

y(x) = c1€** + ¢y cos 2w + ¢y sin2x , cp,c9,c3 ER .

Esercizio 10.5. Risolvere le sequenti equazioni differenziali omogenee:

(1) yW =4y — 2" +12/ + 9y =0 , (2)y" — 4y +8y" — 8y +4y=0.
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B Soluzione di (1). Il polinomio caratteristico & p(A) = A* —4X3 — 2\% + 12\ + 9. Si
osserva che A\; = —1 e una radice, per cui dividendo per \ + 1 si ottiene
p(N) = A+ 1)\ =5A2 431+ 9)
dove A3 — 5% + 3X\ + 9 ¢ ancora divisibile per A + 1 per cui
PN =A+1)*N—6A+9) = (A+1)*(\—3)*.

Le radici, dunque, sono A\; = —1 e Ay = 3 ciascuna con molteplicita m = 2. Pertanto le
soluzioni dell’equazione differenziale (1) sono

y(z) = cre + €™ + csve ™ + cyxe® | ;R 1< <4,

Soluzione di (2). 1l polinomio caratteristico & p(A) = A* — 43 + 8\% — 8\ + 4.
Si osservi che

4
4
A=D*'=) ( )A’f(—1)4—k =1 — 4N+ 6X% — 43 + \*

quindi
PN =A=D 222 = +3 =N —D* 42N -2+ D) +1= -1 +20-1)*+1 =

= [ =12 +1]".
Le radici di p(\) sono le soluzioni (ciascuna con molteplicita 2) di (A —1)%+41 = 0 ovvero
A—1==2icheda \y =141 Ay =1—17 = A. Pertanto le soluzioni dell’equazione
differenziale proposta sono

y(x) = c1e® cosx + cpe” sinx + czre® cosx + cure”sine , ¢ € Ri1<i <4,
[ |
Esercizio 10.6. Risolvere le sequenti equazioni differenziali a coefficienti costanti
(1) y®) =3y — 2y =e"cosz (2) yW —2y@ 4y =Be"sine + 2> + 1.
B Soluzione di (1). Il polinomio caratteristico & p(A) = A> =3\ —2 e A\ = —1 ne ¢

una radice per cui, dividendo per A + 1, si ottiene p(A) = (A + 1)(A\* — A — 2). Le radici
del trinomio risultano essere —1 e Ay = 2. Quindi il polinomio caratteristico ha la radice
doppia A\; = —1 e la radice (semplice) \y = 2. Le soluzioni dell’equazione differenziale
omogenea associata all’equazione differenziale (1) sono

u(zr) = cre® + e (cg+cgx) , 1,060,053 ER.

Poiché il dato e del tipo prodotto di un’esponenziale e di una combinazione lineare di
cos x e sinx, la soluzione particolare la ricerchiamo del tipo

yo(x) = e*(acosx +bsinz) , a,beR.
Calcolando la derivate fino al III ordine si ottiene

yo(z) = €”[(a+b)cosx + (b — a)sin x]
(10.2) Yo (@

yy'(x) = e"[2(b—a) cosx — 2(a + b)sinx)] .

~ —

= e"(2bcosx — 2asinx)
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Sostituendo nell’equazione differenziale e semplificando per e* # 0, si ha la relazione
—(b+ Ta)cosx + (a — Tb) sinx = cosx .

Siccome le funzioni cos x e sin x sono linearmente indipendenti, si ottiene il sistema lineare

ina,b
b+ 7a=—1
a—Tb=0
1
da cui a = —l, b= Pertanto
50 50
() = —sc"(Tcos + sina)
Yo(x) = 506 cosx +sinx) .

In conclusione le soluzioni dell’equazione differenziale (1) sono le funzioni y(z) = yo(z) +
u(x) ovvero

1
y(x) = —%ez(ﬂ:osx +sinx) +c1e® + e "(cg+c3w) , 00,3 ER.

Soluzione di (2). Il polinomio caratteristico ¢ p(\) = A —2X24+1 = (A2 —1)2. Le radici
sono A\; = 1, Ay = —1 entrambe con molteplicita 2. Pertanto le soluzioni dell’equazione
differenziale omogenea associata sono le funzioni

w(x) = cre” + e " +cgre’ +eqxe , g €R, 1<5<4.
Osservando il dato dell’equazione differenziale, la soluzione particolare e del tipo
Yo(x) = y1(x) + y2(2)
per y1, Yo rispettivamente soluzioni particolari delle equazioni differenziali
y W —2y@ 1y =5e"sing , YW —2y@ fy=a?+1.

Percio esse saranno del tipo

y1(z) = e“(acosz +bsinz) |  yu(x) = ap + a1z + agx? .
Derivando
yi(z) = e*[(a + b) cosz + (b — a) sin ] : yy(x) = a1 + 2asx
y{(x) = e*(2bcosx — 2asinx) : Y (x) = 2as
y'(@) = e*[2(b— a)cosz — 2(a + b)sinz)]  ,  y'(z) =y (2) =0
(4)

Yy, () = e"(—4acosx — 4bsinx) .
Sostituendo nelle equazioni differenziali si ottengono le relazioni
—(3a +4b) cosx + (4a — 3b)sinx = 5sinz ,  awr® + a1z + ap — day = ¥ + 1

da cul 1 sistemi lineari

CLQZ]_
{3a+4b:0

s CL1:0
4da —3b =5
—4(12:1
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4 3
5 b= ——=,a9=05, ap =0, as = 1. La soluzione particolare

5

le cui soluzioni sono a =

risulta dunque
1
yo(z) = 5em(4cosm — 3sinx) + 2%+ 5.
Pertanto le soluzioni dell’equazione differenziale (2) sono
1
y(zr) = ge”(élcosa:—3sin:v—|—cl)+026_’U+03xe’3~|—04xe_“”+:1:2+5 , eER 1<5<4.
|

Esercizio 10.7. Risolvere le sequenti equazioni differenziali

(1) y(5) _ 2y(4) + 2y/// - 4y// + y/ . COS(l‘ + 2) ’ (2) 2y” + y/ —y=2¢".

B Soluzione di (1). Il polinomio caratteristico & p(A) = A5 — 2\ + 2X3 — 4X\2 + \ — 2.
Osserviamo che tale polinomio non puo avere radici negative. Una rapida verifica prova
che \; = 2 ¢ radice del polinomio Con la divisione per A — 2 si ottiene p(A) = (A —2)(A\* +
202 + 1) = (A — 2)(A\* 4+ 1)? cosl si hanno anche le radici complesse coniugate Ay = i e
X2 = —i, con molt(\y) = molt(Xy) = 2. Le soluzioni dell’equazione differenziale omogenea
sono le funzioni u € C*°(R)

u(z) = c1e** + cycosx + c3sina + cyr cos T + cyrsin

c; € R, 1 <j <5 Il dato b(z) = e” cos(x + 2) = €®(cos2 cosz —sin2 sinx) e del tipo
b(x) = e**(Acos Sz + Bsinffx) con « = § =1, A = cos2, B = —sin2. Determiniamo
una soluzione particolare dello stesso tipo, cioe

yo(z) = e¢"(acosx + bsinx)

Derivando si ha

o) = e*[(a + D) cosz + (b — @) sina]

yo(z) = 2e*(bcosx — asin )

yo'(x) = 2e*[(b— a) cosx — (a + b) sin ]
(4)

YD (z) = —4e”(acos x + bsin x)
y$(z) = —4e®[(a + b) cosz + (b — a) sin z] .
Sostituendo nell’equazione differenziale si ottiene la relazione
—(a+Tb)cosx + (7Ta — b)sinx = cos2 cosz —sin2 sinz

da cul il sistema
—a — 7b = cos?2
Ta —b=—sin?2
con soluzioni

1 1
a= —%(COSQ +7sin2) , b= %(SiDQ — Tcos2)

Ne segue che

yo(z) ?[—(cos2+ Tsin2)cosz + (sin2 — 7cos2) sinz] .

= —e¢
50
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Infine le soluzioni dell’equazione differenziale sono le funzioni C*°(R)

y(x) = %e“’ [—(cos2 4 7sin2) cosx + (sin2 — 7 cos 2) sin x| +

+c1e® 4+ cocos + Cc3SInx + 4T CcoST + csxrsine
per c; € R, 1 <5 <5.
Soluzione di (2). 1l polinomio caratteristico & p(\) = 22\ + X\ — 1 le cui radici risultano

1
essere \y = —1, Ay = 3 Ne segue che le soluzioni dell’equazione omogenea associata sono

u(r) = e+ ce™? o, ER.

La soluzione particolare ¢ del tipo yo(x) = ce® per cui y'(x) = y"(x) = ce®. Sos-
)=

tituendo nell’equazione differenziale si determina ¢ = 1. Dunque yo(z . Le soluzioni
dell’equazione differenziale (2) sono

y(x) =€+ e + ce™? e eR.

Esercizio 10.8. Risolvere le equazioni differenziali
(1) 2" +y —y=2e"cosx , (2) ' +3y +2y=uze".
B Soluzione di (1). L’equazione differenziale omogenea associata ¢ la stessa di quella
dell’equazione differenziale (2) dell’Esercizio 10.7 per cui le sue soluzioni sono
u(r) = e+ ce™? o, ER.
La soluzione particolare ¢ del tipo
yo(x) = e*(acosx + bsinx)

come quella di (1) dell’Esercizio 10.7. Pertanto, con le stesse espressioni di y;, y; trovate
in tale esercizio, sostituendo nella (1), si ottiene la relazione

Bbcosx — basinx = 2cos x

2
dacuia=0,b= = In definitiva le soluzioni dell’equazione differenziale (1) sono

2
y(xr) = 56”” sinz 4 cre ™+ e™? | e, €R.

Soluzione di (2). 11 polinomio caratteristico & p(A) = A*+3\+2 per cui le radici (reali,
semplici e distinte) sono Ay = —2, Ay = —1, quindi le soluzioni dell’equazione differenziale
omogenea associata sono le funzioni

u(z) =cre® e | e, €R

Per determinare una soluzione particolare, il dato b(x) = ze™® ¢ del tipo b(x) = (by +
bix)e*® con o = —1 che ¢ radice del polinomio caratteristico. Cercheremo allora una
soluzione particolare del tipo

Yo(z) = x(ar1x + ag)e™ ovvero yo(r) = e “(a12® + apx) .
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Si ha
Yolx ) e (=
e [—a1x? + (2a1 — ag)x + ag
Yo (@ ) e (
= e "[az® + (—4a1 + ag)z + 2(a; — ag)]

Sostituendo nell’equazione differenziale, si ottiene il sistema lineare

2@1:1
= ag=-1, a1 ==

a17? — apr + 2a1x + ag) =

ar12? — (2a; — ag)r — ag — 2a17 + 2a1 — ay) =

2a1+a0:0

w1 5)

Infine la generica soluzione dell’equazione differenziale data e

1
y(r) =e " (— -+ Cl) + e, e, €R.

quindi

Esercizio 10.9. Risolvere le equazioni differenziali
(1) v"+y =sinz—cosz , (2) ¥y —y=¢€"sinx.
B Soluzione di (1). Il polinomio caratteristico ¢ p(A) = A2 + A = A(A + 1) le cui radici

(semplici) sono A\; = 0, Ay = —1 per cui le soluzioni dell’equazione differenziale omogenea
associata sono le funzioni u € C*°(R),

u(x) =c+ce ™, ¢, €R.

I1 dato e del tipo b(x) € una combinazione lineare di cosax e sinax con a = 1 e dunque
1o = 1 non e soluzione del polinomio caratteristico. In questo caso una soluzione partico-
lare la ricerchiamo dello stesso tipo del dato, cioe

yo(z) = acosx + bsinz .

Si ha
yo(xr) = —asinz + beosx
Yo(z) = —acosz —bsinx .

La sostituzione nell’equazione differenziale da la relazione
(b—a)cosz — (a+b)sinx =sinx — cosx

quindi si ha il sistema lineare

Pertanto yo(z) = —sinz. Infine le soluzioni dell’equazione differenziale data sono le
funzioni y € C*(R),

y(x) =c1 +cpe® —sinx |, ¢, €R.
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Soluzione di (2). 1l polinomio caratteristico ¢ p(A\) = A? — 1 con radici 1 e —1 per cui
le soluzioni dell’equazione differenziale omogenea associata sono le funzioni

’LL(Q?) =cie’ e’ , c,€ER.
La soluzione particolare e del tipo
yo(z) = e"(acosx + bsinx) .

Derivando (cfr. (10.2)) e sostituendo nell’equazione differenziale si perviene alla relazione

(2b — a)cosx — (2a + b) sinz = sinz

2b—a =10 2 1
— azE,b:——.

che da il sistema

—2a—-b=1
Quindi
1
Yo(z) = 561(2 cosx — sinx)

avendo cosl le soluzioni dell’equazione differenziale

y(x) = gex(Qcosx —sinx+c1)+ e, o, €R.

Esercizio 10.10. Risolvere le equazioni differenziali

1)y —y=e"+sinz , (2) y¥ -3y +2y= 2z —1)e".

B Soluzione di (1). Il polinomio caratteristico ¢ p(A) = A? — 1 le cui radici (semplici)
sono A\; = —1, Ay = 1. Quindi le soluzioni dell’equazione differenziale omogenea associata
sono

u(z) =cre " +ce® e, €RL
Cerchiamo una soluzione particolare del tipo
yo(z) = ayze® + agsinx + agcos

somma delle soluzioni particolari dell’equazioni differenziali

i T

y'—y=¢e" , Yy —y=snzx.
Derivando si ottiene:
Yo = a1€” + a1xe” + agcosx — agsinx
Yo = 2a1€” + a1xe® — agsinx — agcosx
che sostituite nell’equazione differenziale 3’ — y = e® + sinx danno il sistema lineare
2(11 =1
—2CL2 =1
—2CL3 =0
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1 1
la cui soluzione ¢ a; = 3 as = st az = 0. Pertanto una soluzione particolare ¢
1 1
yo(z) = §xe$ ~3 sinz e le soluzioni dell’equazione differenziale data sono
1 T 1 : —x x
y(x) = 5 re’ — 3 sinx +cre” + e, e, €R.

Soluzione di (2). Il polinomio caratteristico & p(A) = A* — 3\ + 2 le cui radici sono
A1 =1, Ay = 2. Le soluzioni dell’equazione differenziale omogenea associata sono

w(z) = cpe® + o e*® c,c0 €ER.
) b

Una soluzione particolare la cerchiamo del tipo
yo(x) = (Crx + Ch)e ™ .

Derivando
yo(z) = e *(=Ciz — Cy + C)

yo(r)=e*(Ciz + Cy—2CY) .
Sostituendo nell’equazione differenziale si ottiene
6C 1z +6Cy) —5C) =2 —1
da cui il sistema lineare

6C, =2 1
{ ' — C(): - .

1
=0 =
6C, — 50, = —1 9 '3

vo(z) = @ o+ %) -

e le soluzioni dell’equazione differenziali sono le funzioni

Percio

1 1
y(x) = <§x+§) el et +ee® | o, eR.

Esercizio 10.11. Risolvere le equazioni differenziali
() y" =2y +y=€e"—x+sinz , 2) ¢y +y" -y —y=(+1)e™.
B Soluzione di (1). Il polinimio caratteristico & p(A) = A — 2\ +1 = (A — 1)? che ha

A = 1 come radice doppia. Le soluzioni dell’equazione differenziale omogenea associata
SOno

u(z) = 1€ + coxe® e, €RL
Ricerchiamo una soluzione particolare del tipo
Yo(z) = ao + a1w + asx®e” + azsinx + ay cos x
somma delle soluzioni particolari delle equazioni differenziali

y' =2 +y=-x , y'-2+y=¢" , ¢y -2 +y=sinz.
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Si ha
Yo = a1 + aszre®(2+ ) + azcosx — agsina |
Yy = aze”(2 + 4r + x?) — azsinx — ay cos T .

Sostituendo nell’equazione differenziale si ottiene il sistema lineare

(2a5 =1
a; = —1

< 2a4 =1
—2a3 =0

L ag — 2a; =0

. 1 :
che ha la soluzione ayg = =2, a; = —1, ay = 5 az =0, ag = 3 Pertanto una soluzione

particolare ¢

5 +1 2g“rl
=-2—x+ -z — COSZT
Yo 5 5

e le soluzioni dell’equazione differenziale data sono

1 1
y(x):—Z—x+§x26x+§ cosx + c1e” + caxe® | 1,0 €ER.

Soluzione di (2). Il polinomio caratteristico & p(A) = A* + A? — X — 1 che si decompone
in p(A) = (A+1)*(A—1): ha quindi la radice semplice A\; = 1 e la radice doppia Ay = —1.
Le soluzioni dell’equazione omogenea associata sono dunque

w(x) = c1e” + coe” "+ cgwe”

Siccome il dato ¢ b(z) = (z + 1)e™® (cioé prodotto di un polinomio per un’esponenziale
ek con k = —1 che ¢ radice doppia del polinomio caretteristico) cerchiamo una soluzione

particolare del tipo

yo(z) = 22 (ag + ayz)e™

Derivando successivamente si ha
v = (—az® + (3ar — ag)a® + 2apx) €77,
1§ = (o — (60— an)e® + 2o — 2a0)e + 200)
y' = (—a2® + (941 — ag)a® — 2(9ay — 3ag)z + 6ay — Gag) e .

Sostituite nell’equazione differenziale y” +1y” —y' —y = (x+1)e~* danno il sistema lineare

—12a1 =1
6(11 - 4&0 =1

la cui soluzione & > 1o ero yo(x) 2 (1 —1—3 ~*. Le soluzioni
ui soluzione € ag = —=, a; = —-— ovver x)=—z"|—=x+=)e " uzioni
Ty T T v 12778
dell’equazione differenziale proposta sono pertanto
1 3
y(zr) = —2? (E T+ g) e+ e’ + e +egre”™ , cp,09,c3 €ER.
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Esercizio 10.12. Trovare le soluzioni delle sequenti equazioni differenziali di ordine su-
periore al primo a coefficienti costanti:

(1) yP+y® =2 422 +e" |, (2) ¥ =2 +y=cosz,
(3) v +y=sinx.

B Soluzione di (1). L’equazione differenziale omogenea associata ¢ y©® + y®? = 0 il
cui polinomio caratteristico & p(A) = A + A2 = A*(XA + 1). Le sue radici sono A\, =
0 (doppia) e Ay = —1 (semplice). Le soluzioni dell’equazione differenziale omogenea
associata all’equazione differenziale data sono

w(z) =1 + cox + cze”

Poiché il dato b(z) = 22 +2x+e® & somma di un polinomio di IT grado e di un’esponenziale
e la prima derivata non nulla nell’equazione differenziale ¢ la seconda, cerchiamo una
soluzione particolare del tipo

yo(7) = 2*(agz® + a1 + ag) + aze”
che ¢ la somma delle due soluzioni particolari dell’equazioni differenziali
y® +y@ =22 o y® 4y =
Derivando successivamente si ha
vy = 4asx® + 3a12? + 2apr + aze” |
vy = 12a97* 4 6a;x + 2a9 + aze®
Yo' = 24asx + 6a; + aze” .

Quindi sostituendo nell’equazione differenziale si ottiene il sistema lineare

12a5, =1
12&2 + 3&1 =1
3(11 +ag = 0
2(13 =1
.. 1 1 ) . R
che ha le soluzioni ay = a; =0, ay = 12’ asz = 7 La soluzione particolare e
1 4 1 x
yo(z) = Tk + 3¢
e quindi le soluzioni dell’equazione differenziale data sono
1 1
y(x) = 1 3:4—1—5 e+t ecrtcee™ |, c,c,c3€R.

Soluzione di (2). Il polinomio caratteristico & p(A) = A\* — 2\ +1 = (A — 1)? che ha
A = 1 come radice doppia. Le soluzioni dell’equazione differenziale omogenea associata
sono allora
u(z) = c1€® + cowe® | 00 ER.
Cerchiamo una soluzione particolare del tipo

yo(z) =aycosx +agsine |, aj,a3 €R.
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Derivando si ha

Yo = —aysinx + as cosx
Yo = —a1 COST — agsinx

che sostituite nell’equazione differenziale y” — 2y’ + y = cosx da

2a1sinx — 2a9 cosx = cosx

1
per cui ¢ a; = 0, ay = —= e la soluzione particolare cercata risulta essere yo(x) = —= sin .

Ne segue che le soluzioni dell’equazione differenziale data sono

1
y(x):—§ sinx + cie” + cowe® , ¢, € R

Soluzione di (3). Il polinomio caratteristico & p(A\) = A\* + 1 che ha le radici (semplici)
complesse e coniugate A\; = i, Ay = —i. Le soluzioni dell’equazione differenziale omogenea
associata sono

u(z) =cpcosx + cosine ,  c,c0 €R.

In questo caso per determinare una soluzione particolare useremo il metodo della varia-
zione delle costanti. Sia dunque

yo(z) = c1(z) cosz + co(z) sinx .
Derivando
' =c,cosx +chsinx —cysinx +cpcosxz  con ¢, cosx + cysinz =0
0 =0 2 1 2
Yo = —cysinz + ¢y cosx — ¢y cosx — cysinx
da cui, sostituendo nell’equazione differenziale y” + y = sinx e tenendo conto della con-

dizione imposta a ¢} cosz + ¢, sinx si ottiene il sistema di equazioni differenziali del I
ordine

cicosx + dysine =0
—csinz + ¢ycosx =sinw .
Risolvendo si ha
c = —sin*z

¢y =sinxcosw

. 1 1. L.,
che integrate danno ¢;(z) = —5% + 5 Sinz cosz, ¢ = 5 sin"z.
. . ) 1 1, .
La soluzione particolare risulta allora essere yo(z) = —Qx cos x + 3 sinz e di conseguenza
le soluzioni dell’equazione differenziale data sono
1 .
y(x) = —§:ccosx +cicosx +cpsine , ¢, €R

(essendo 3 sinx gia compresa in cosinz).
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Esercizio 10.13. Usando il metodo della variazione delle costanti, determinare le solu-
zioni delle equazioni differenziali

1) v +2¢ +5y =2xe "cos2z ,(2) ' —y=e"sinz,
(1) y" + 2y + 5y v -y
3) v -2y +y=(x—1)*cosz.
B Soluzione di (1). Tl polinomio caratteristico & p(\) = A>+2A+5 le cui radici (complesse

e semplici) sono \; = —1 4+ 2i, \y = Ay = —1 — 24. Allora le soluzione dell’equazione
differenziale omogenea associata sono

u(z) = cre”*cos2x + cpe” Tsin2x  ,  c,00 € R
Cerchiamo dunque una soluzione particolare del tipo
yo(z) = e % (c1(x) cos 2z + co(x) sin2z) .
Usando il metodo della variazione delle costanti si ha
Yo(x) = e ¥ [sin 2x(—2¢1(x) — ca(x)) + cos 2x(—cq(x) + 2¢(x))]
con e " [c}(x) cos 2x + cy(x) sin 2z] = 0,
Yo (x) = e ¥ [sin 2z (=2 (z) — cy(x) + 4eq(x) — 3ea(x)) +
+cos 2z (2, (x) — i (x) — 3eq(x) — dea(2))]
sostituendo nell’equazione differenziale si ottiene
e " [} (x)(—2sin 2z — cos 2x) + ¢4(x)(2 cos 2x — sin 2z)] = 2ze™" cos 2z .
Dobbiamo dunque risolvere il sistema
ci(x) cos2x + ¢h(x) sin2z = 0
{ —c)(x)(2sin 2z + cos 2z) + () (2 cos 2z — sin 2x) = 2z cos 2x
ovvero, per cos2x # 0,
{c/l(a:) — —(tan 2z)c,(z)
ch(x)[(2sin 2z + cos 2z) tan 2z + (2 cos 2z — sin 2x)| = 2z cos 2z .
La seconda equazione differenziale del sistema si riscrive

y(r)(2sin? 22 + sin 27 cos 27 + 2 cos® 27 — sin 2x cos 27) = 27 cos® 2z
che da

cy(x) = xcos® 2z .
Quindi si ha il sistema
{ di(x) = —xsin 2x cos 2z

1
/ = —— 1 4
/ i ci(x) S sinde
chy(x) = x cos® 2x

ch(z) = x cos? 2z .

1 1/1 1
—3 /:csin4xd:c: 3 (ZZCCOSZLSC—Z /cos4xdx) =
1 1 1 .
= 3 (xcos4x—/cos4xdx> = 3 <xcos4x— 1 sm4x> +c

Poiché



Esercizi sulle equazioni differenziali 141

allora .
c(x) = —2(4x cosdxr — sindzx) .
Poiché
, 1 ) 1. 1 ,
cos 2xdxt_:2 5 | cos tdt = Z(t +sintcost) + ¢ = Z(Qx + sin2x cos2z) + ¢ =
1 :
= §(4:c +sindx) + ¢
allora
1
/x0032 2edr = 3 [:1:(435 + sindx) — /(43: + sin4x) d:c] =
1 9 ) 5 1 1 9 )
=3 da® + rsindxr — 22° + 1 cosdx| +c= 5(83: + 4w sindx + cosdx) + ¢
per cui
1
co(x) = 3—2(8372 + 4z sin 4z + cos4x) .
Pertanto

1
yo(z) = 3 e "[(4x cos 4x — sindx) cos 2z + (82* + 4a sin 4x + cos 4x) sin 2z] .

Le soluzioni dell’equazione differenziale data sono

1

y(x) = 3 e "[(4x cos 4x — sin 4z + ¢;) cos 2z + (82% + 4w sin 4x + cos 4w + o) sin 2] |
per ci,co € R.

Soluzione di (2). 1l polinomio caratteristico ¢ p(A) = A — 1 le cui radici sono \; =
1, Aa = —1 per cui le soluzioni dell’equazione differenziale omogenea associata sono le
funzioni

u(z) = cre® + e, e, €RL
Sia allora

—X

yo(z) = c1(x)e” + ca(x)e
una soluzione particolare dell’equazione differenziale data. Allora

x

Yo = che® +che ™ + c1e” — e con e’ +che =0

Yo = che® — che ™ + c1e” + cpe””

e sostituendo nell’equazione differenziale si ottiene il sistema di equazioni differenziali del

I ordine
et +che ™ =0
et —che ™™ =esinx .
Sommando membro a membro si ricava 2¢) = sinx che sostituito nella I equazione del
sistema da 2c¢, = —e** sinx, quindi
/ I
¢, =gsinz

1
dy=—=e*sinw.
2
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Abbiamo ) ]
/5 sinx dx = —3 cosz + C

mentre integrando per parti
1 1
/—5 e* sinx dr = n e**(cosz — 2sinx) + C' .

Prendiamo allora

1
ci(r) = —= cosz , co(r) =— e**(cosz — 2sinzx)
2 10
per cui
1 T ]' xT : 1 x .
yo(z) = ~3 e’ cosx + 10 e*(cosx — 2sinz) = 1 e”(=bcosx + cosx — 2sinx)
ovvero

1
yo(z) = ~ e”(2cosz + sinx)

Infine le soluzioni dell’equazione differenziale data sono le funzioni

1
y(x) = 5 e’(2cosx +sinx +¢1) + e, 0 €R.

Soluzione di (3). Il polinomio caratteristico & p(A) = A\* =2\ +1 = (A — 1)? che ha
A =1 come radice doppia. Le soluzioni dell’equazione differenziale omogenea sono
u(z) = crxe® + ce® e, €RL
Sia
Yo(z) = c1(z)xe” + ca(x)e” = [z cr(x) + ca(x)]e”
abbiamo allora
Yo=lrc+cy+ct+xer+ele” =xd+d+ (x4 1)ey + eo)e”
conxcy +cy =0,
vo = (@ +1)d + s + o1 + (@ + D)o + cale”
che sostituite nell’equazione differenziale assieme alla condizione imposta xc} + ¢, = 0 da
il sistema di equazioni differenziali del I ordine
dp=(z—1)e"cosz

xch+ch,=0 | =
=
[(z +1)c) + dyle” = (z — 1)* cos x ch =

Per n € N siano

—x(x —1)%e®cosx .
I, = /(a: —1)"e P cosxdr = F,(z)+C,

I = /(x —1)"e “sinz dx
in modo che
/(:Jc —1)*e “cosxdr = I, = Fy(z) +C

mentre notiamo che

/—x(x —1)*e*cosxdr = —xFy(z) + / Fy(z)dr = —xFy(z) + F(z) + C'.
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Prendiamo allora
() = Fy(x) , co(x) = —x Fy(x) + F(x)
cosicché
xey(x) + co(x) = aFy(x) — xFy(z) + F(z) = F(x)
dunque
yo(x) = " F(x)

e le soluzioni dell’equazione differenziale sono le funzioni

y(z) = e'[F(z) + a1z + )]
Dobbiamo ora determinare F(x). E facile verificare che, per n > 1,

1
I, = 5(9[; — 1)"e “(sinx — cosz) + g Iy — g In-1

1
Iy = —5(1’ —1)"e *(sin « + cosx) + 2

n
In— a J?’L— 9
g fn-1t 5 Jn-t

da culi si ricavano
I+ J,=—(x—1)"e cosx+nl, 1 , I,—J,=(x—1)"e"sine—nd, ;.
Inoltre

e “(sinz —cosx) + C

DN | —

Iy = /e_zcosxdx =

1
Jo = /e”” sinxdr = —3 e “(sinz 4+ cosz)+ C .

Le relazioni sopra scritte permettono di calcolare

Fy(x) = e ®sinzx B(az D2 — 1) +3(x —1)? — 3] +

1
+e " cosx {—5 (z—D*+3x—-12*+6(x—1)+ 3}
e infine

F(z)+C = /F4(x) de =e “sinx [—%(m — 1) =2 -1+ 12(x - 1) + 15} -

—(z—1)e Fcosz 2z —1)° +9(z — 1)+ 12] + C .

Esercizio 10.14. Risolvere le sequenti equazioni differenziali
1) 2y =4y —y' =0 , (2) ¢y —siny’ =0,

"
(3") 27y'y" — (1 + 9@/2)% =0 , y"#0.
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W Soluzione di (1*). Posto t(y) =y’ si ha t(y(z)) = y/(z) da cui
V@) = 50/ (a) = 7ot (ol)) = G (0(0) 10 = £ (0@ (2) = ¢ (92 (o) -

Dunque 3" = /(y)t(y), cosicché I'equazione differenziale si riscrive come 'equazione dif-
ferenziale nella variabile y

it —4t* —t =0 <= tQ2yt' —4t—-1)=0.

A t = 0 corrispondono le funzioni costanti y = ¢, ¢ € R, soluzioni dunque dell’equazione
differenziale (1*). Considerando 'equazione differenziale 2yt’ — 4t — 1 =0 per y # 0, si e
ricondotti all’equazione differenziale del I ordine a variabili separabili

1

t'=—(4t+1).
-+ 1)
< 1 . 1 - .

Sedt+1=0ey = —7 Per cui le rette y = 1% + ¢ sono soluzioni della (1*).
Se 4t + 1 # 0 le soluzioni sono

log [4t + 1| =2log|y| + ¢ < |4t +1|=Cy* , C>0

da cui
1
4t +1 =40y < t:Z—l(iCyQ—l) , C>0.

1
Abbiamo allora le equazioni differenziali (a variabili separabili) y' = Z(ﬂ:Cgf —1).
Posto C' = a?, a # 0, si hanno
]' /

1
y=1@y=1) e Y =—2(@y+1).

La prima equazione ha le soluzioni y = jzl. Considerando a’y? — 1 # 0 nella prima,
risolviamo le equazioni differenziali ¢
4
a?y? — 1

4
a’y? +1

/

y =1

/

y =—1.

Integrando si ottengono le soluzioni

1 ay — 1\ 4
—log( y+ ) =x+b e —arctanay = —x+0b , beR,
a

a ay +1
da cui
ay — 1 2 a
<ay T 1) = e ay=tan [Z<_$ +0)]

La seconda da le soluzioni

1

y = — tan [%(—aﬁtb)} , a,beER a#0.
a

Per la prima si ha

ay — 1’ — palatb)/2 ay :L 1 — 4ealat+b)/2
ay
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Risolvendo rispetto a y si determinano le soluzioni

1 1 4 ealz+b)/2 1 (1 + ea(m+b)/2)2
Y= ilFewor “ 0 VT T e

a,beR, a#0.

Soluzione di (2). Derivando si ottiene
y/// _ y/// COSy” — O y///(l — COS y//) — 0 .

Se y” = 0 allora y = ax® + bz + ¢ con a,b,c € R; se cosy” = 1 allora y = arz? + bx + ¢
cona € Z,b,ceR.

Soluzione di (3*). Siat =1y, t = t(x), allora t’ = 3", t” = y"”. L’equazione differenziale

sl riscrive
27t = (1 + 9y )" =0 .
Sia z(t(z)) = t'(x) allora
t"=21"=272
,_ dz - : :
dove 2’ = i percio I'equazione diventa
27t

=——z

1+ 92
ottenendo cosi un’equazione differenziale (in z) a variabili separabili. Integrando si ha

az=1+9%% | ¢ eR.

Tuttavia z = ¢’ per cui questa & 'equazione a variabili separabili (in t)

Cltl — (1 _|_ 9t2)3/2

2Ttz — (1 +9t%)2 =0 +—= 72/

la cui soluzione ¢ data da
cl/(1+9t2)_3/2 dt=x+cy , ceR.

Una soluzione dell'integrale (differenziale binomio'®, cfr. (7.1)) ¢
t
quindi si ha
t

— 242 2 2
Clm—$+02 < Clt —(.I""CQ) <1+9t) <~

[} = 9(z + )]t = (z + cn)?

dalla quale si ricava
T + Co

[c% —9(z + 02)2} vz
Notiamo che, poiche ¢ = v/, queste sono ancora equazioni differenziali a variabili separabili
(in y)

o T+ Co
y =+ 5 911/2
[01—9(:16—1—02)]
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con soluzioni
T+ Cco

[ = 9(z + )?]

dz

y(w)+03:i/

1/2

1.e.
~1/2

1
y(@)+ 3 =F—= [ 18z + c2)[c] — Iz + 2)?] dx

18
da cui, integrando,

1 1
y(x) +c3 = 5 [ — 9(z + )] RPN [y(z) + 03}2 =% [ = 9(z + e)?] ,
c1,c2,c3 € R. In conclusione le soluzioni y(x) dell’equazione differenziale (3) devono
soddisfare alla relazione

9[y(:v)+a}2+(:v+b)2:c2 , a,bjceR.
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11. APPENDICE

Esercizio 11.1. Il limite

lim cosn
n—oo

non esiste.

B Soluzione. Se fosse lim cosn = +o00 allora per ogni K > 2 dovrebbe esistere ng € N

n—oo
tale che per ogni n > nk sia cosn > K > 2 e questo e assurdo.
In modo analogo non puo essere lim cosn = —oo. Supponiamo allora che sia lim cosn =
n—00 n—00
¢. In particolare sarebbe lim cos2n = ¢ ovvero lim (2cos’n — 1) = £ e questo equivar-

n—oo n—oo

rebbe a 2 lim cos’n = ¢ + 1. Per I'unicita del limite necessariamente
n—oo

dovrebbe dunque essere 202 = ¢ 4 1. Pertanto

1
(11.1) (=1 0 Ez—é :
D’altra parte sarebbe anche lim cos3n = /¢ ovvero, poiché cos3n = 4cos®*n — 3cosn,
n—oo

dovrebbe essere (sempre per I'unicita del limite) 4¢3 — 3¢ = . Questo, tenuto conto della
(11.1), darebbe I'unica soluzione

(11.2) (=1.

Ora sarebbe

lim sinn = lim (1 — cos®n) =0
n—oo n—oo

e quindi per ogni € > 0 esisterebbe n. € N, tale che per n > n. si avrebbe sin’n < &2

ovvero |sinn| < e. Dunque sarebbe lim sinn = 0. Siccome per la (11.2) sarebbe anche
n—oo

lim cos(n + 1) = 1, si avrebbe 'assurdo
n—oo

1= lim (cos1 cosn —sin 1 sinn) = cos 1.
n—oo

Ne segue allora che il limite lim cosn non esiste.
n—oo

e [’esercizio sopra implica che anche il limite

lim sinn
n—oo
non esiste.
Esercizio 11.2. Calcolare
. logn!
lim

n—oco nlogn

B Soluzione. Poiché per n > 2
vn!

vn!l 1 | B log n!
log —— = —logn! —logn = logn —1
n n nlogn

vn! 1
lim log—n =log—-=-1
n—00 n (&
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allora per ogni € > 0 esiste n. € N, n. > 2, tale che per ogni n € N, n > n. si abbia

log n!
lo n( 8" _1)+1 <e
nlogn
cioe oun!
—5—1<logn( g —1> <e-—1
nlogn
da cui

1 1 ! -1
e+ - ogn 1<€

logn ~ nlogn logn
In particolare per € = 2 esiste ny € N tale che per n > ny sia
3 log n! 1
<% 1<

“logn  nlogn logn
Applicando il teorema dei due carabinieri si ottiene
. logn!
im =
n—oo nlogn

Esercizio 11.3. Dimostrare la sequente generalizzazione del Teorema di Rolle:

Teorema 11.1. Sia f : (—o0,a] — R una funzione continua, derivabile in (—oo,a) e tale
che lim f(x)= f(a). Allora esiste xo € (—o0,a) tale che f'(xq) = 0.
T——00

In modo analogo, se [ : [a,4+00) = R ¢é una funzione continua, derivabile in [a,+00) e
tale che lir_"I_l f(z) = f(a), allora esiste xy € [a,+00) tale che f'(zg) = 0.
T—r1+00

B Soluzione. (1) Supponiamo che esista x; < a per cui f(x;) = f(a): dal teorema di
Rolle esisterebbe xy € (1,a) per cuif’(zg) = 0 e questo concluderebbe la dimostrazione.
(2) Se invece f(z1) # f(a) per ogni x; < a, poiché la funzione f ha minimo e massimo sul
compatto [x1, al, si pud supporre che essi cadano in 7 e a, per ogni x; < a. Se ad esempio
a ¢ il punto di minimo e z; ¢ il punto di massimo allora f(a) < f(x;). D’altra parte per
ogni x5 < x1 1 punti di estremo di f su [z, a] sono x5 e a. Se a fosse il punto di massimo
allora per ogni « € [z9,a] sarebbe f(x) < f(a): in particolare sarebbe f(z;) < f(a)
(perché x; € [r3,a]) che sarebbe dunque un assurdo. Pertanto per ogni zo < zy, a @ il
punto di minimo e z ¢ il punto di massimo di f su [z3,a]. Allora, poiché f(xs) # f(a),
e f(xe) > f(a) e per ogni xo < z1, f(x1) < f(x2), cioe f & decrescente su (—oo, x1] e di
conseguenza

fla) = lim f(z)= sup f(z)

T——00 x€(—00,21)
da cui 'assurdo f(zs) < f(a). In modo analogo si procede se a ¢ il punto di massimo. In
ogni caso dunque se per ogni z7 < a ¢ f(x1) # f(a) allora esiste 2} < a per cui almeno
uno dei punti di estremo di f su [z}, a] sia in (2], a): se xy ¢ tale punto, si ha f'(z) = 0.
In modo analogo si procede se EI}_] f(z) = f(a).
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